123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- /**
- * @author mikael emtinger / http://gomo.se/
- * @author alteredq / http://alteredqualia.com/
- * @author WestLangley / http://github.com/WestLangley
- */
- THREE.Quaternion = function( x, y, z, w ) {
- this.x = x || 0;
- this.y = y || 0;
- this.z = z || 0;
- this.w = ( w !== undefined ) ? w : 1;
- };
- THREE.Quaternion.prototype = {
- constructor: THREE.Quaternion,
- set: function ( x, y, z, w ) {
- this.x = x;
- this.y = y;
- this.z = z;
- this.w = w;
- return this;
- },
- copy: function ( q ) {
- this.x = q.x;
- this.y = q.y;
- this.z = q.z;
- this.w = q.w;
- return this;
- },
- setFromEuler: function ( v, order ) {
- // http://www.mathworks.com/matlabcentral/fileexchange/
- // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
- // content/SpinCalc.m
-
- var _order = order || 'XYZ',
-
- c1 = Math.cos( v.x / 2 ),
- c2 = Math.cos( v.y / 2 ),
- c3 = Math.cos( v.z / 2 ),
- s1 = Math.sin( v.x / 2 ),
- s2 = Math.sin( v.y / 2 ),
- s3 = Math.sin( v.z / 2 );
-
- switch ( _order ) {
-
- case 'YXZ':
-
- this.x = s1 * c2 * c3 + c1 * s2 * s3;
- this.y = c1 * s2 * c3 - s1 * c2 * s3;
- this.z = c1 * c2 * s3 - s1 * s2 * c3;
- this.w = c1 * c2 * c3 + s1 * s2 * s3;
-
- break;
-
- case 'ZXY':
-
- this.x = s1 * c2 * c3 - c1 * s2 * s3;
- this.y = c1 * s2 * c3 + s1 * c2 * s3;
- this.z = c1 * c2 * s3 + s1 * s2 * c3;
- this.w = c1 * c2 * c3 - s1 * s2 * s3;
-
- break;
-
- case 'ZYX':
-
- this.x = s1 * c2 * c3 - c1 * s2 * s3;
- this.y = c1 * s2 * c3 + s1 * c2 * s3;
- this.z = c1 * c2 * s3 - s1 * s2 * c3;
- this.w = c1 * c2 * c3 + s1 * s2 * s3;
-
- break;
-
- case 'YZX':
-
- this.x = s1 * c2 * c3 + c1 * s2 * s3;
- this.y = c1 * s2 * c3 + s1 * c2 * s3;
- this.z = c1 * c2 * s3 - s1 * s2 * c3;
- this.w = c1 * c2 * c3 - s1 * s2 * s3;
-
- break;
-
- case 'XZY':
-
- this.x = s1 * c2 * c3 - c1 * s2 * s3;
- this.y = c1 * s2 * c3 - s1 * c2 * s3;
- this.z = c1 * c2 * s3 + s1 * s2 * c3;
- this.w = c1 * c2 * c3 + s1 * s2 * s3;
-
- break;
-
- default: // 'XYZ'
-
- this.x = s1 * c2 * c3 + c1 * s2 * s3;
- this.y = c1 * s2 * c3 - s1 * c2 * s3;
- this.z = c1 * c2 * s3 + s1 * s2 * c3;
- this.w = c1 * c2 * c3 - s1 * s2 * s3;
-
- break;
-
- }
-
- return this;
- },
- setFromAxisAngle: function ( axis, angle ) {
- // from http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
- // axis have to be normalized
- var halfAngle = angle / 2,
- s = Math.sin( halfAngle );
- this.x = axis.x * s;
- this.y = axis.y * s;
- this.z = axis.z * s;
- this.w = Math.cos( halfAngle );
- return this;
- },
- setFromRotationMatrix: function ( m ) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
-
- // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
-
- var te = m.elements,
-
- m11 = te[0], m12 = te[4], m13 = te[8],
- m21 = te[1], m22 = te[5], m23 = te[9],
- m31 = te[2], m32 = te[6], m33 = te[10],
-
- trace = m11 + m22 + m33,
- s;
-
- if( trace > 0 ) {
-
- s = 0.5 / Math.sqrt( trace + 1.0 );
-
- this.w = 0.25 / s;
- this.x = ( m32 - m23 ) * s;
- this.y = ( m13 - m31 ) * s;
- this.z = ( m21 - m12 ) * s;
-
- } else if ( m11 > m22 && m11 > m33 ) {
-
- s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
-
- this.w = (m32 - m23 ) / s;
- this.x = 0.25 * s;
- this.y = (m12 + m21 ) / s;
- this.z = (m13 + m31 ) / s;
-
- } else if (m22 > m33) {
-
- s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
-
- this.w = (m13 - m31 ) / s;
- this.x = (m12 + m21 ) / s;
- this.y = 0.25 * s;
- this.z = (m23 + m32 ) / s;
-
- } else {
-
- s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
-
- this.w = ( m21 - m12 ) / s;
- this.x = ( m13 + m31 ) / s;
- this.y = ( m23 + m32 ) / s;
- this.z = 0.25 * s;
-
- }
-
- return this;
- },
- calculateW : function () {
- this.w = - Math.sqrt( Math.abs( 1.0 - this.x * this.x - this.y * this.y - this.z * this.z ) );
- return this;
- },
- inverse: function () {
- this.x *= -1;
- this.y *= -1;
- this.z *= -1;
- return this;
- },
- length: function () {
- return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
- },
- normalize: function () {
- var l = Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
- if ( l === 0 ) {
- this.x = 0;
- this.y = 0;
- this.z = 0;
- this.w = 0;
- } else {
- l = 1 / l;
- this.x = this.x * l;
- this.y = this.y * l;
- this.z = this.z * l;
- this.w = this.w * l;
- }
- return this;
- },
- multiply: function ( a, b ) {
- // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
- this.x = a.x * b.w + a.y * b.z - a.z * b.y + a.w * b.x;
- this.y = -a.x * b.z + a.y * b.w + a.z * b.x + a.w * b.y;
- this.z = a.x * b.y - a.y * b.x + a.z * b.w + a.w * b.z;
- this.w = -a.x * b.x - a.y * b.y - a.z * b.z + a.w * b.w;
- return this;
- },
- multiplySelf: function ( b ) {
- var qax = this.x, qay = this.y, qaz = this.z, qaw = this.w,
- qbx = b.x, qby = b.y, qbz = b.z, qbw = b.w;
- this.x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
- this.y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
- this.z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
- this.w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
- return this;
- },
- multiplyVector3: function ( vector, dest ) {
- if ( !dest ) { dest = vector; }
- var x = vector.x, y = vector.y, z = vector.z,
- qx = this.x, qy = this.y, qz = this.z, qw = this.w;
- // calculate quat * vector
- var ix = qw * x + qy * z - qz * y,
- iy = qw * y + qz * x - qx * z,
- iz = qw * z + qx * y - qy * x,
- iw = -qx * x - qy * y - qz * z;
- // calculate result * inverse quat
- dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return dest;
- },
- clone: function () {
- return new THREE.Quaternion( this.x, this.y, this.z, this.w );
- }
- }
- THREE.Quaternion.slerp = function ( qa, qb, qm, t ) {
- // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
- var cosHalfTheta = qa.w * qb.w + qa.x * qb.x + qa.y * qb.y + qa.z * qb.z;
- if (cosHalfTheta < 0) {
- qm.w = -qb.w; qm.x = -qb.x; qm.y = -qb.y; qm.z = -qb.z;
- cosHalfTheta = -cosHalfTheta;
- } else {
- qm.copy(qb);
- }
- if ( Math.abs( cosHalfTheta ) >= 1.0 ) {
- qm.w = qa.w; qm.x = qa.x; qm.y = qa.y; qm.z = qa.z;
- return qm;
- }
- var halfTheta = Math.acos( cosHalfTheta ),
- sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
- if ( Math.abs( sinHalfTheta ) < 0.001 ) {
- qm.w = 0.5 * ( qa.w + qb.w );
- qm.x = 0.5 * ( qa.x + qb.x );
- qm.y = 0.5 * ( qa.y + qb.y );
- qm.z = 0.5 * ( qa.z + qb.z );
- return qm;
- }
- var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
- ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
- qm.w = ( qa.w * ratioA + qm.w * ratioB );
- qm.x = ( qa.x * ratioA + qm.x * ratioB );
- qm.y = ( qa.y * ratioA + qm.y * ratioB );
- qm.z = ( qa.z * ratioA + qm.z * ratioB );
- return qm;
- }
|