Vector4.js 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. /**
  2. * @author supereggbert / http://www.paulbrunt.co.uk/
  3. * @author philogb / http://blog.thejit.org/
  4. * @author mikael emtinger / http://gomo.se/
  5. * @author egraether / http://egraether.com/
  6. * @author WestLangley / http://github.com/WestLangley
  7. */
  8. THREE.Vector4 = function ( x, y, z, w ) {
  9. this.x = x || 0;
  10. this.y = y || 0;
  11. this.z = z || 0;
  12. this.w = ( w !== undefined ) ? w : 1;
  13. };
  14. THREE.extend( THREE.Vector4.prototype, {
  15. constructor: THREE.Vector4,
  16. set: function ( x, y, z, w ) {
  17. this.x = x;
  18. this.y = y;
  19. this.z = z;
  20. this.w = w;
  21. return this;
  22. },
  23. setX: function ( x ) {
  24. this.x = x;
  25. return this;
  26. },
  27. setY: function ( y ) {
  28. this.y = y;
  29. return this;
  30. },
  31. setZ: function ( z ) {
  32. this.z = z;
  33. return this;
  34. },
  35. setW: function ( w ) {
  36. this.w = w;
  37. return this;
  38. },
  39. setComponent: function ( index, value ) {
  40. switch ( index ) {
  41. case 0: this.x = value; break;
  42. case 1: this.y = value; break;
  43. case 2: this.z = value; break;
  44. case 3: this.w = value; break;
  45. default: throw new Error( "index is out of range: " + index );
  46. }
  47. },
  48. getComponent: function ( index ) {
  49. switch ( index ) {
  50. case 0: return this.x;
  51. case 1: return this.y;
  52. case 2: return this.z;
  53. case 3: return this.w;
  54. default: throw new Error( "index is out of range: " + index );
  55. }
  56. },
  57. copy: function ( v ) {
  58. this.x = v.x;
  59. this.y = v.y;
  60. this.z = v.z;
  61. this.w = ( v.w !== undefined ) ? v.w : 1;
  62. return this;
  63. },
  64. add: function ( v, w ) {
  65. if ( w !== undefined ) {
  66. console.warn( 'DEPRECATED: Vector4\'s .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
  67. return this.addVectors( v, w );
  68. }
  69. this.x += v.x;
  70. this.y += v.y;
  71. this.z += v.z;
  72. this.w += v.w;
  73. return this;
  74. },
  75. addScalar: function ( s ) {
  76. this.x += s;
  77. this.y += s;
  78. this.z += s;
  79. this.w += s;
  80. return this;
  81. },
  82. addVectors: function ( a, b ) {
  83. this.x = a.x + b.x;
  84. this.y = a.y + b.y;
  85. this.z = a.z + b.z;
  86. this.w = a.w + b.w;
  87. return this;
  88. },
  89. sub: function ( v, w ) {
  90. if ( w !== undefined ) {
  91. console.warn( 'DEPRECATED: Vector4\'s .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
  92. return this.subVectors( v, w );
  93. }
  94. this.x -= v.x;
  95. this.y -= v.y;
  96. this.z -= v.z;
  97. this.w -= v.w;
  98. return this;
  99. },
  100. subVectors: function ( a, b ) {
  101. this.x = a.x - b.x;
  102. this.y = a.y - b.y;
  103. this.z = a.z - b.z;
  104. this.w = a.w - b.w;
  105. return this;
  106. },
  107. multiplyScalar: function ( s ) {
  108. this.x *= s;
  109. this.y *= s;
  110. this.z *= s;
  111. this.w *= s;
  112. return this;
  113. },
  114. applyMatrix4: function ( m ) {
  115. var x = this.x;
  116. var y = this.y;
  117. var z = this.z;
  118. var w = this.w;
  119. var e = m.elements;
  120. this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
  121. this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
  122. this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
  123. this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
  124. return this;
  125. },
  126. divideScalar: function ( s ) {
  127. if ( s !== 0 ) {
  128. this.x /= s;
  129. this.y /= s;
  130. this.z /= s;
  131. this.w /= s;
  132. } else {
  133. this.x = 0;
  134. this.y = 0;
  135. this.z = 0;
  136. this.w = 1;
  137. }
  138. return this;
  139. },
  140. min: function ( v ) {
  141. if ( this.x > v.x ) {
  142. this.x = v.x;
  143. }
  144. if ( this.y > v.y ) {
  145. this.y = v.y;
  146. }
  147. if ( this.z > v.z ) {
  148. this.z = v.z;
  149. }
  150. if ( this.w > v.w ) {
  151. this.w = v.w;
  152. }
  153. return this;
  154. },
  155. max: function ( v ) {
  156. if ( this.x < v.x ) {
  157. this.x = v.x;
  158. }
  159. if ( this.y < v.y ) {
  160. this.y = v.y;
  161. }
  162. if ( this.z < v.z ) {
  163. this.z = v.z;
  164. }
  165. if ( this.w < v.w ) {
  166. this.w = v.w;
  167. }
  168. return this;
  169. },
  170. clamp: function ( min, max ) {
  171. // This function assumes min < max, if this assumption isn't true it will not operate correctly
  172. if ( this.x < min.x ) {
  173. this.x = min.x;
  174. } else if ( this.x > max.x ) {
  175. this.x = max.x;
  176. }
  177. if ( this.y < min.y ) {
  178. this.y = min.y;
  179. } else if ( this.y > max.y ) {
  180. this.y = max.y;
  181. }
  182. if ( this.z < min.z ) {
  183. this.z = min.z;
  184. } else if ( this.z > max.z ) {
  185. this.z = max.z;
  186. }
  187. if ( this.w < min.w ) {
  188. this.w = min.w;
  189. } else if ( this.w > max.w ) {
  190. this.w = max.w;
  191. }
  192. return this;
  193. },
  194. negate: function() {
  195. return this.multiplyScalar( -1 );
  196. },
  197. dot: function ( v ) {
  198. return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
  199. },
  200. lengthSq: function () {
  201. return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
  202. },
  203. length: function () {
  204. return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
  205. },
  206. lengthManhattan: function () {
  207. return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
  208. },
  209. normalize: function () {
  210. return this.divideScalar( this.length() );
  211. },
  212. setLength: function ( l ) {
  213. var oldLength = this.length();
  214. if ( oldLength !== 0 && l !== oldLength ) {
  215. this.multiplyScalar( l / oldLength );
  216. }
  217. return this;
  218. },
  219. lerp: function ( v, alpha ) {
  220. this.x += ( v.x - this.x ) * alpha;
  221. this.y += ( v.y - this.y ) * alpha;
  222. this.z += ( v.z - this.z ) * alpha;
  223. this.w += ( v.w - this.w ) * alpha;
  224. return this;
  225. },
  226. equals: function ( v ) {
  227. return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
  228. },
  229. clone: function () {
  230. return new THREE.Vector4( this.x, this.y, this.z, this.w );
  231. },
  232. setAxisAngleFromQuaternion: function ( q ) {
  233. // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
  234. // q is assumed to be normalized
  235. this.w = 2 * Math.acos( q.w );
  236. var s = Math.sqrt( 1 - q.w * q.w );
  237. if ( s < 0.0001 ) {
  238. this.x = 1;
  239. this.y = 0;
  240. this.z = 0;
  241. } else {
  242. this.x = q.x / s;
  243. this.y = q.y / s;
  244. this.z = q.z / s;
  245. }
  246. return this;
  247. },
  248. setAxisAngleFromRotationMatrix: function ( m ) {
  249. // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
  250. // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
  251. var angle, x, y, z, // variables for result
  252. epsilon = 0.01, // margin to allow for rounding errors
  253. epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
  254. te = m.elements,
  255. m11 = te[0], m12 = te[4], m13 = te[8],
  256. m21 = te[1], m22 = te[5], m23 = te[9],
  257. m31 = te[2], m32 = te[6], m33 = te[10];
  258. if ( ( Math.abs( m12 - m21 ) < epsilon )
  259. && ( Math.abs( m13 - m31 ) < epsilon )
  260. && ( Math.abs( m23 - m32 ) < epsilon ) ) {
  261. // singularity found
  262. // first check for identity matrix which must have +1 for all terms
  263. // in leading diagonal and zero in other terms
  264. if ( ( Math.abs( m12 + m21 ) < epsilon2 )
  265. && ( Math.abs( m13 + m31 ) < epsilon2 )
  266. && ( Math.abs( m23 + m32 ) < epsilon2 )
  267. && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
  268. // this singularity is identity matrix so angle = 0
  269. this.set( 1, 0, 0, 0 );
  270. return this; // zero angle, arbitrary axis
  271. }
  272. // otherwise this singularity is angle = 180
  273. angle = Math.PI;
  274. var xx = ( m11 + 1 ) / 2;
  275. var yy = ( m22 + 1 ) / 2;
  276. var zz = ( m33 + 1 ) / 2;
  277. var xy = ( m12 + m21 ) / 4;
  278. var xz = ( m13 + m31 ) / 4;
  279. var yz = ( m23 + m32 ) / 4;
  280. if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term
  281. if ( xx < epsilon ) {
  282. x = 0;
  283. y = 0.707106781;
  284. z = 0.707106781;
  285. } else {
  286. x = Math.sqrt( xx );
  287. y = xy / x;
  288. z = xz / x;
  289. }
  290. } else if ( yy > zz ) { // m22 is the largest diagonal term
  291. if ( yy < epsilon ) {
  292. x = 0.707106781;
  293. y = 0;
  294. z = 0.707106781;
  295. } else {
  296. y = Math.sqrt( yy );
  297. x = xy / y;
  298. z = yz / y;
  299. }
  300. } else { // m33 is the largest diagonal term so base result on this
  301. if ( zz < epsilon ) {
  302. x = 0.707106781;
  303. y = 0.707106781;
  304. z = 0;
  305. } else {
  306. z = Math.sqrt( zz );
  307. x = xz / z;
  308. y = yz / z;
  309. }
  310. }
  311. this.set( x, y, z, angle );
  312. return this; // return 180 deg rotation
  313. }
  314. // as we have reached here there are no singularities so we can handle normally
  315. var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 )
  316. + ( m13 - m31 ) * ( m13 - m31 )
  317. + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
  318. if ( Math.abs( s ) < 0.001 ) s = 1;
  319. // prevent divide by zero, should not happen if matrix is orthogonal and should be
  320. // caught by singularity test above, but I've left it in just in case
  321. this.x = ( m32 - m23 ) / s;
  322. this.y = ( m13 - m31 ) / s;
  323. this.z = ( m21 - m12 ) / s;
  324. this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
  325. return this;
  326. }
  327. } );