123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750 |
- /**
- * @author zz85 / http://www.lab4games.net/zz85/blog
- */
- THREE.ShapeUtils = {
- // calculate area of the contour polygon
- area: function ( contour ) {
- var n = contour.length;
- var a = 0.0;
- for ( var p = n - 1, q = 0; q < n; p = q ++ ) {
- a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;
- }
- return a * 0.5;
- },
- triangulate: ( function () {
- /**
- * This code is a quick port of code written in C++ which was submitted to
- * flipcode.com by John W. Ratcliff // July 22, 2000
- * See original code and more information here:
- * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml
- *
- * ported to actionscript by Zevan Rosser
- * www.actionsnippet.com
- *
- * ported to javascript by Joshua Koo
- * http://www.lab4games.net/zz85/blog
- *
- */
- function snip( contour, u, v, w, n, verts ) {
- var p;
- var ax, ay, bx, by;
- var cx, cy, px, py;
- ax = contour[ verts[ u ] ].x;
- ay = contour[ verts[ u ] ].y;
- bx = contour[ verts[ v ] ].x;
- by = contour[ verts[ v ] ].y;
- cx = contour[ verts[ w ] ].x;
- cy = contour[ verts[ w ] ].y;
- if ( Number.EPSILON > ( ( ( bx - ax ) * ( cy - ay ) ) - ( ( by - ay ) * ( cx - ax ) ) ) ) return false;
- var aX, aY, bX, bY, cX, cY;
- var apx, apy, bpx, bpy, cpx, cpy;
- var cCROSSap, bCROSScp, aCROSSbp;
- aX = cx - bx; aY = cy - by;
- bX = ax - cx; bY = ay - cy;
- cX = bx - ax; cY = by - ay;
- for ( p = 0; p < n; p ++ ) {
- px = contour[ verts[ p ] ].x;
- py = contour[ verts[ p ] ].y;
- if ( ( ( px === ax ) && ( py === ay ) ) ||
- ( ( px === bx ) && ( py === by ) ) ||
- ( ( px === cx ) && ( py === cy ) ) ) continue;
- apx = px - ax; apy = py - ay;
- bpx = px - bx; bpy = py - by;
- cpx = px - cx; cpy = py - cy;
- // see if p is inside triangle abc
- aCROSSbp = aX * bpy - aY * bpx;
- cCROSSap = cX * apy - cY * apx;
- bCROSScp = bX * cpy - bY * cpx;
- if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false;
- }
- return true;
- }
- // takes in an contour array and returns
- return function triangulate( contour, indices ) {
- var n = contour.length;
- if ( n < 3 ) return null;
- var result = [],
- verts = [],
- vertIndices = [];
- /* we want a counter-clockwise polygon in verts */
- var u, v, w;
- if ( THREE.ShapeUtils.area( contour ) > 0.0 ) {
- for ( v = 0; v < n; v ++ ) verts[ v ] = v;
- } else {
- for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v;
- }
- var nv = n;
- /* remove nv - 2 vertices, creating 1 triangle every time */
- var count = 2 * nv; /* error detection */
- for ( v = nv - 1; nv > 2; ) {
- /* if we loop, it is probably a non-simple polygon */
- if ( ( count -- ) <= 0 ) {
- //** Triangulate: ERROR - probable bad polygon!
- //throw ( "Warning, unable to triangulate polygon!" );
- //return null;
- // Sometimes warning is fine, especially polygons are triangulated in reverse.
- console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' );
- if ( indices ) return vertIndices;
- return result;
- }
- /* three consecutive vertices in current polygon, <u,v,w> */
- u = v; if ( nv <= u ) u = 0; /* previous */
- v = u + 1; if ( nv <= v ) v = 0; /* new v */
- w = v + 1; if ( nv <= w ) w = 0; /* next */
- if ( snip( contour, u, v, w, nv, verts ) ) {
- var a, b, c, s, t;
- /* true names of the vertices */
- a = verts[ u ];
- b = verts[ v ];
- c = verts[ w ];
- /* output Triangle */
- result.push( [ contour[ a ],
- contour[ b ],
- contour[ c ] ] );
- vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] );
- /* remove v from the remaining polygon */
- for ( s = v, t = v + 1; t < nv; s ++, t ++ ) {
- verts[ s ] = verts[ t ];
- }
- nv --;
- /* reset error detection counter */
- count = 2 * nv;
- }
- }
- if ( indices ) return vertIndices;
- return result;
- }
- } )(),
- triangulateShape: function ( contour, holes ) {
- function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) {
- // inOtherPt needs to be collinear to the inSegment
- if ( inSegPt1.x !== inSegPt2.x ) {
- if ( inSegPt1.x < inSegPt2.x ) {
- return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) );
- } else {
- return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) );
- }
- } else {
- if ( inSegPt1.y < inSegPt2.y ) {
- return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) );
- } else {
- return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) );
- }
- }
- }
- function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) {
- var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y;
- var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y;
- var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x;
- var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y;
- var limit = seg1dy * seg2dx - seg1dx * seg2dy;
- var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy;
- if ( Math.abs( limit ) > Number.EPSILON ) {
- // not parallel
- var perpSeg2;
- if ( limit > 0 ) {
- if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return [];
- perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
- if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return [];
- } else {
- if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return [];
- perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
- if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return [];
- }
- // i.e. to reduce rounding errors
- // intersection at endpoint of segment#1?
- if ( perpSeg2 === 0 ) {
- if ( ( inExcludeAdjacentSegs ) &&
- ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
- return [ inSeg1Pt1 ];
- }
- if ( perpSeg2 === limit ) {
- if ( ( inExcludeAdjacentSegs ) &&
- ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
- return [ inSeg1Pt2 ];
- }
- // intersection at endpoint of segment#2?
- if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ];
- if ( perpSeg1 === limit ) return [ inSeg2Pt2 ];
- // return real intersection point
- var factorSeg1 = perpSeg2 / limit;
- return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx,
- y: inSeg1Pt1.y + factorSeg1 * seg1dy } ];
- } else {
- // parallel or collinear
- if ( ( perpSeg1 !== 0 ) ||
- ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return [];
- // they are collinear or degenerate
- var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point?
- var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point?
- // both segments are points
- if ( seg1Pt && seg2Pt ) {
- if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) ||
- ( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points
- return [ inSeg1Pt1 ]; // they are the same point
- }
- // segment#1 is a single point
- if ( seg1Pt ) {
- if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2
- return [ inSeg1Pt1 ];
- }
- // segment#2 is a single point
- if ( seg2Pt ) {
- if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1
- return [ inSeg2Pt1 ];
- }
- // they are collinear segments, which might overlap
- var seg1min, seg1max, seg1minVal, seg1maxVal;
- var seg2min, seg2max, seg2minVal, seg2maxVal;
- if ( seg1dx !== 0 ) {
- // the segments are NOT on a vertical line
- if ( inSeg1Pt1.x < inSeg1Pt2.x ) {
- seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x;
- seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x;
- } else {
- seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x;
- seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x;
- }
- if ( inSeg2Pt1.x < inSeg2Pt2.x ) {
- seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x;
- seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x;
- } else {
- seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x;
- seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x;
- }
- } else {
- // the segments are on a vertical line
- if ( inSeg1Pt1.y < inSeg1Pt2.y ) {
- seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y;
- seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y;
- } else {
- seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y;
- seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y;
- }
- if ( inSeg2Pt1.y < inSeg2Pt2.y ) {
- seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y;
- seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y;
- } else {
- seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y;
- seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y;
- }
- }
- if ( seg1minVal <= seg2minVal ) {
- if ( seg1maxVal < seg2minVal ) return [];
- if ( seg1maxVal === seg2minVal ) {
- if ( inExcludeAdjacentSegs ) return [];
- return [ seg2min ];
- }
- if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ];
- return [ seg2min, seg2max ];
- } else {
- if ( seg1minVal > seg2maxVal ) return [];
- if ( seg1minVal === seg2maxVal ) {
- if ( inExcludeAdjacentSegs ) return [];
- return [ seg1min ];
- }
- if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ];
- return [ seg1min, seg2max ];
- }
- }
- }
- function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) {
- // The order of legs is important
- // translation of all points, so that Vertex is at (0,0)
- var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y;
- var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y;
- var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y;
- // main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg.
- var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX;
- var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX;
- if ( Math.abs( from2toAngle ) > Number.EPSILON ) {
- // angle != 180 deg.
- var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX;
- // console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle );
- if ( from2toAngle > 0 ) {
- // main angle < 180 deg.
- return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) );
- } else {
- // main angle > 180 deg.
- return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) );
- }
- } else {
- // angle == 180 deg.
- // console.log( "from2to: 180 deg., from2other: " + from2otherAngle );
- return ( from2otherAngle > 0 );
- }
- }
- function removeHoles( contour, holes ) {
- var shape = contour.concat(); // work on this shape
- var hole;
- function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) {
- // Check if hole point lies within angle around shape point
- var lastShapeIdx = shape.length - 1;
- var prevShapeIdx = inShapeIdx - 1;
- if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx;
- var nextShapeIdx = inShapeIdx + 1;
- if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0;
- var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] );
- if ( ! insideAngle ) {
- // console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y );
- return false;
- }
- // Check if shape point lies within angle around hole point
- var lastHoleIdx = hole.length - 1;
- var prevHoleIdx = inHoleIdx - 1;
- if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx;
- var nextHoleIdx = inHoleIdx + 1;
- if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0;
- insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] );
- if ( ! insideAngle ) {
- // console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y );
- return false;
- }
- return true;
- }
- function intersectsShapeEdge( inShapePt, inHolePt ) {
- // checks for intersections with shape edges
- var sIdx, nextIdx, intersection;
- for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) {
- nextIdx = sIdx + 1; nextIdx %= shape.length;
- intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true );
- if ( intersection.length > 0 ) return true;
- }
- return false;
- }
- var indepHoles = [];
- function intersectsHoleEdge( inShapePt, inHolePt ) {
- // checks for intersections with hole edges
- var ihIdx, chkHole,
- hIdx, nextIdx, intersection;
- for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) {
- chkHole = holes[ indepHoles[ ihIdx ]];
- for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) {
- nextIdx = hIdx + 1; nextIdx %= chkHole.length;
- intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true );
- if ( intersection.length > 0 ) return true;
- }
- }
- return false;
- }
- var holeIndex, shapeIndex,
- shapePt, holePt,
- holeIdx, cutKey, failedCuts = [],
- tmpShape1, tmpShape2,
- tmpHole1, tmpHole2;
- for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
- indepHoles.push( h );
- }
- var minShapeIndex = 0;
- var counter = indepHoles.length * 2;
- while ( indepHoles.length > 0 ) {
- counter --;
- if ( counter < 0 ) {
- console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" );
- break;
- }
- // search for shape-vertex and hole-vertex,
- // which can be connected without intersections
- for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) {
- shapePt = shape[ shapeIndex ];
- holeIndex = - 1;
- // search for hole which can be reached without intersections
- for ( var h = 0; h < indepHoles.length; h ++ ) {
- holeIdx = indepHoles[ h ];
- // prevent multiple checks
- cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx;
- if ( failedCuts[ cutKey ] !== undefined ) continue;
- hole = holes[ holeIdx ];
- for ( var h2 = 0; h2 < hole.length; h2 ++ ) {
- holePt = hole[ h2 ];
- if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue;
- if ( intersectsShapeEdge( shapePt, holePt ) ) continue;
- if ( intersectsHoleEdge( shapePt, holePt ) ) continue;
- holeIndex = h2;
- indepHoles.splice( h, 1 );
- tmpShape1 = shape.slice( 0, shapeIndex + 1 );
- tmpShape2 = shape.slice( shapeIndex );
- tmpHole1 = hole.slice( holeIndex );
- tmpHole2 = hole.slice( 0, holeIndex + 1 );
- shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );
- minShapeIndex = shapeIndex;
- // Debug only, to show the selected cuts
- // glob_CutLines.push( [ shapePt, holePt ] );
- break;
- }
- if ( holeIndex >= 0 ) break; // hole-vertex found
- failedCuts[ cutKey ] = true; // remember failure
- }
- if ( holeIndex >= 0 ) break; // hole-vertex found
- }
- }
- return shape; /* shape with no holes */
- }
- var i, il, f, face,
- key, index,
- allPointsMap = {};
- // To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.
- var allpoints = contour.concat();
- for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
- Array.prototype.push.apply( allpoints, holes[ h ] );
- }
- //console.log( "allpoints",allpoints, allpoints.length );
- // prepare all points map
- for ( i = 0, il = allpoints.length; i < il; i ++ ) {
- key = allpoints[ i ].x + ":" + allpoints[ i ].y;
- if ( allPointsMap[ key ] !== undefined ) {
- console.warn( "THREE.Shape: Duplicate point", key );
- }
- allPointsMap[ key ] = i;
- }
- // remove holes by cutting paths to holes and adding them to the shape
- var shapeWithoutHoles = removeHoles( contour, holes );
- var triangles = THREE.ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape
- //console.log( "triangles",triangles, triangles.length );
- // check all face vertices against all points map
- for ( i = 0, il = triangles.length; i < il; i ++ ) {
- face = triangles[ i ];
- for ( f = 0; f < 3; f ++ ) {
- key = face[ f ].x + ":" + face[ f ].y;
- index = allPointsMap[ key ];
- if ( index !== undefined ) {
- face[ f ] = index;
- }
- }
- }
- return triangles.concat();
- },
- isClockWise: function ( pts ) {
- return THREE.ShapeUtils.area( pts ) < 0;
- },
- // Bezier Curves formulas obtained from
- // http://en.wikipedia.org/wiki/B%C3%A9zier_curve
- // Quad Bezier Functions
- b2: ( function () {
- function b2p0( t, p ) {
- var k = 1 - t;
- return k * k * p;
- }
- function b2p1( t, p ) {
- return 2 * ( 1 - t ) * t * p;
- }
- function b2p2( t, p ) {
- return t * t * p;
- }
- return function b2( t, p0, p1, p2 ) {
- return b2p0( t, p0 ) + b2p1( t, p1 ) + b2p2( t, p2 );
- };
- } )(),
- // Cubic Bezier Functions
- b3: ( function () {
- function b3p0( t, p ) {
- var k = 1 - t;
- return k * k * k * p;
- }
- function b3p1( t, p ) {
- var k = 1 - t;
- return 3 * k * k * t * p;
- }
- function b3p2( t, p ) {
- var k = 1 - t;
- return 3 * k * t * t * p;
- }
- function b3p3( t, p ) {
- return t * t * t * p;
- }
- return function b3( t, p0, p1, p2, p3 ) {
- return b3p0( t, p0 ) + b3p1( t, p1 ) + b3p2( t, p2 ) + b3p3( t, p3 );
- };
- } )()
- };
|