Hilbert.js 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. /**
  2. * Hilbert Curves.
  3. *
  4. * @author Dylan Grafmyre
  5. */
  6. THREE.Hilbert = {
  7. /**
  8. * Generates 2D-Coordinates in a very fast way.
  9. *
  10. * @author Dylan Grafmyre
  11. *
  12. * Based on work by:
  13. * @author Thomas Diewald
  14. * @link http://www.openprocessing.org/sketch/15493
  15. *
  16. * @param center Center of Hilbert curve.
  17. * @param size Total width of Hilbert curve.
  18. * @param iterations Number of subdivisions.
  19. * @param v0 Corner index -X, -Z.
  20. * @param v1 Corner index -X, +Z.
  21. * @param v2 Corner index +X, +Z.
  22. * @param v3 Corner index +X, -Z.
  23. */
  24. generate2D( center, size, iterations, v0, v1, v2, v3 ) {
  25. // Default Vars
  26. var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
  27. size = size !== undefined ? size : 10,
  28. half = size / 2,
  29. iterations = iterations !== undefined ? iterations : 1,
  30. v0 = v0 !== undefined ? v0 : 0,
  31. v1 = v1 !== undefined ? v1 : 1,
  32. v2 = v2 !== undefined ? v2 : 2,
  33. v3 = v3 !== undefined ? v3 : 3
  34. ;
  35. var vec_s = [
  36. new THREE.Vector3( center.x - half, center.y, center.z - half ),
  37. new THREE.Vector3( center.x - half, center.y, center.z + half ),
  38. new THREE.Vector3( center.x + half, center.y, center.z + half ),
  39. new THREE.Vector3( center.x + half, center.y, center.z - half )
  40. ];
  41. var vec = [
  42. vec_s[ v0 ],
  43. vec_s[ v1 ],
  44. vec_s[ v2 ],
  45. vec_s[ v3 ]
  46. ];
  47. // Recurse iterations
  48. if ( 0 <= -- iterations ) {
  49. var tmp = [];
  50. Array.prototype.push.apply( tmp, THREE.Hilbert.generate2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );
  51. Array.prototype.push.apply( tmp, THREE.Hilbert.generate2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );
  52. Array.prototype.push.apply( tmp, THREE.Hilbert.generate2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );
  53. Array.prototype.push.apply( tmp, THREE.Hilbert.generate2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) );
  54. // Return recursive call
  55. return tmp;
  56. }
  57. // Return complete Hilbert Curve.
  58. return vec;
  59. },
  60. /**
  61. * Generates 3D-Coordinates in a very fast way.
  62. *
  63. * @author Dylan Grafmyre
  64. *
  65. * Based on work by:
  66. * @author Thomas Diewald
  67. * @link http://www.openprocessing.org/visuals/?visualID=15599
  68. *
  69. * @param center Center of Hilbert curve.
  70. * @param size Total width of Hilbert curve.
  71. * @param iterations Number of subdivisions.
  72. * @param v0 Corner index -X, +Y, -Z.
  73. * @param v1 Corner index -X, +Y, +Z.
  74. * @param v2 Corner index -X, -Y, +Z.
  75. * @param v3 Corner index -X, -Y, -Z.
  76. * @param v4 Corner index +X, -Y, -Z.
  77. * @param v5 Corner index +X, -Y, +Z.
  78. * @param v6 Corner index +X, +Y, +Z.
  79. * @param v7 Corner index +X, +Y, -Z.
  80. */
  81. generate3D( center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7 ) {
  82. // Default Vars
  83. var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
  84. size = size !== undefined ? size : 10,
  85. half = size / 2,
  86. iterations = iterations !== undefined ? iterations : 1,
  87. v0 = v0 !== undefined ? v0 : 0,
  88. v1 = v1 !== undefined ? v1 : 1,
  89. v2 = v2 !== undefined ? v2 : 2,
  90. v3 = v3 !== undefined ? v3 : 3,
  91. v4 = v4 !== undefined ? v4 : 4,
  92. v5 = v5 !== undefined ? v5 : 5,
  93. v6 = v6 !== undefined ? v6 : 6,
  94. v7 = v7 !== undefined ? v7 : 7
  95. ;
  96. var vec_s = [
  97. new THREE.Vector3( center.x - half, center.y + half, center.z - half ),
  98. new THREE.Vector3( center.x - half, center.y + half, center.z + half ),
  99. new THREE.Vector3( center.x - half, center.y - half, center.z + half ),
  100. new THREE.Vector3( center.x - half, center.y - half, center.z - half ),
  101. new THREE.Vector3( center.x + half, center.y - half, center.z - half ),
  102. new THREE.Vector3( center.x + half, center.y - half, center.z + half ),
  103. new THREE.Vector3( center.x + half, center.y + half, center.z + half ),
  104. new THREE.Vector3( center.x + half, center.y + half, center.z - half )
  105. ];
  106. var vec = [
  107. vec_s[ v0 ],
  108. vec_s[ v1 ],
  109. vec_s[ v2 ],
  110. vec_s[ v3 ],
  111. vec_s[ v4 ],
  112. vec_s[ v5 ],
  113. vec_s[ v6 ],
  114. vec_s[ v7 ]
  115. ];
  116. // Recurse iterations
  117. if ( -- iterations >= 0 ) {
  118. var tmp = [];
  119. Array.prototype.push.apply( tmp, THREE.Hilbert.generate3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
  120. Array.prototype.push.apply( tmp, THREE.Hilbert.generate3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
  121. Array.prototype.push.apply( tmp, THREE.Hilbert.generate3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
  122. Array.prototype.push.apply( tmp, THREE.Hilbert.generate3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
  123. Array.prototype.push.apply( tmp, THREE.Hilbert.generate3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
  124. Array.prototype.push.apply( tmp, THREE.Hilbert.generate3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
  125. Array.prototype.push.apply( tmp, THREE.Hilbert.generate3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
  126. Array.prototype.push.apply( tmp, THREE.Hilbert.generate3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );
  127. // Return recursive call
  128. return tmp;
  129. }
  130. // Return complete Hilbert Curve.
  131. return vec;
  132. }
  133. };