GPUComputationRenderer.js 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. console.warn( "THREE.GPUComputationRenderer: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation." );
  2. /**
  3. * GPUComputationRenderer, based on SimulationRenderer by zz85
  4. *
  5. * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
  6. * for each compute element (texel)
  7. *
  8. * Each variable has a fragment shader that defines the computation made to obtain the variable in question.
  9. * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
  10. * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
  11. *
  12. * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
  13. * as inputs to render the textures of the next frame.
  14. *
  15. * The render targets of the variables can be used as input textures for your visualization shaders.
  16. *
  17. * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
  18. * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
  19. *
  20. * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
  21. * #DEFINE resolution vec2( 1024.0, 1024.0 )
  22. *
  23. * -------------
  24. *
  25. * Basic use:
  26. *
  27. * // Initialization...
  28. *
  29. * // Create computation renderer
  30. * var gpuCompute = new THREE.GPUComputationRenderer( 1024, 1024, renderer );
  31. *
  32. * // Create initial state float textures
  33. * var pos0 = gpuCompute.createTexture();
  34. * var vel0 = gpuCompute.createTexture();
  35. * // and fill in here the texture data...
  36. *
  37. * // Add texture variables
  38. * var velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
  39. * var posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
  40. *
  41. * // Add variable dependencies
  42. * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
  43. * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
  44. *
  45. * // Add custom uniforms
  46. * velVar.material.uniforms.time = { value: 0.0 };
  47. *
  48. * // Check for completeness
  49. * var error = gpuCompute.init();
  50. * if ( error !== null ) {
  51. * console.error( error );
  52. * }
  53. *
  54. *
  55. * // In each frame...
  56. *
  57. * // Compute!
  58. * gpuCompute.compute();
  59. *
  60. * // Update texture uniforms in your visualization materials with the gpu renderer output
  61. * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
  62. *
  63. * // Do your rendering
  64. * renderer.render( myScene, myCamera );
  65. *
  66. * -------------
  67. *
  68. * Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)
  69. * Note that the shaders can have multiple input textures.
  70. *
  71. * var myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
  72. * var myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
  73. *
  74. * var inputTexture = gpuCompute.createTexture();
  75. *
  76. * // Fill in here inputTexture...
  77. *
  78. * myFilter1.uniforms.theTexture.value = inputTexture;
  79. *
  80. * var myRenderTarget = gpuCompute.createRenderTarget();
  81. * myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
  82. *
  83. * var outputRenderTarget = gpuCompute.createRenderTarget();
  84. *
  85. * // Now use the output texture where you want:
  86. * myMaterial.uniforms.map.value = outputRenderTarget.texture;
  87. *
  88. * // And compute each frame, before rendering to screen:
  89. * gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
  90. * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
  91. *
  92. *
  93. *
  94. * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
  95. * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
  96. * @param {WebGLRenderer} renderer The renderer
  97. */
  98. THREE.GPUComputationRenderer = function ( sizeX, sizeY, renderer ) {
  99. this.variables = [];
  100. this.currentTextureIndex = 0;
  101. var dataType = THREE.FloatType;
  102. var scene = new THREE.Scene();
  103. var camera = new THREE.Camera();
  104. camera.position.z = 1;
  105. var passThruUniforms = {
  106. passThruTexture: { value: null }
  107. };
  108. var passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
  109. var mesh = new THREE.Mesh( new THREE.PlaneBufferGeometry( 2, 2 ), passThruShader );
  110. scene.add( mesh );
  111. this.setDataType = function ( type ) {
  112. dataType = type;
  113. return this;
  114. };
  115. this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {
  116. var material = this.createShaderMaterial( computeFragmentShader );
  117. var variable = {
  118. name: variableName,
  119. initialValueTexture: initialValueTexture,
  120. material: material,
  121. dependencies: null,
  122. renderTargets: [],
  123. wrapS: null,
  124. wrapT: null,
  125. minFilter: THREE.NearestFilter,
  126. magFilter: THREE.NearestFilter
  127. };
  128. this.variables.push( variable );
  129. return variable;
  130. };
  131. this.setVariableDependencies = function ( variable, dependencies ) {
  132. variable.dependencies = dependencies;
  133. };
  134. this.init = function () {
  135. if ( ! renderer.capabilities.isWebGL2 &&
  136. ! renderer.extensions.get( "OES_texture_float" ) ) {
  137. return "No OES_texture_float support for float textures.";
  138. }
  139. if ( renderer.capabilities.maxVertexTextures === 0 ) {
  140. return "No support for vertex shader textures.";
  141. }
  142. for ( var i = 0; i < this.variables.length; i ++ ) {
  143. var variable = this.variables[ i ];
  144. // Creates rendertargets and initialize them with input texture
  145. variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
  146. variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
  147. this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
  148. this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );
  149. // Adds dependencies uniforms to the ShaderMaterial
  150. var material = variable.material;
  151. var uniforms = material.uniforms;
  152. if ( variable.dependencies !== null ) {
  153. for ( var d = 0; d < variable.dependencies.length; d ++ ) {
  154. var depVar = variable.dependencies[ d ];
  155. if ( depVar.name !== variable.name ) {
  156. // Checks if variable exists
  157. var found = false;
  158. for ( var j = 0; j < this.variables.length; j ++ ) {
  159. if ( depVar.name === this.variables[ j ].name ) {
  160. found = true;
  161. break;
  162. }
  163. }
  164. if ( ! found ) {
  165. return "Variable dependency not found. Variable=" + variable.name + ", dependency=" + depVar.name;
  166. }
  167. }
  168. uniforms[ depVar.name ] = { value: null };
  169. material.fragmentShader = "\nuniform sampler2D " + depVar.name + ";\n" + material.fragmentShader;
  170. }
  171. }
  172. }
  173. this.currentTextureIndex = 0;
  174. return null;
  175. };
  176. this.compute = function () {
  177. var currentTextureIndex = this.currentTextureIndex;
  178. var nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
  179. for ( var i = 0, il = this.variables.length; i < il; i ++ ) {
  180. var variable = this.variables[ i ];
  181. // Sets texture dependencies uniforms
  182. if ( variable.dependencies !== null ) {
  183. var uniforms = variable.material.uniforms;
  184. for ( var d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {
  185. var depVar = variable.dependencies[ d ];
  186. uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
  187. }
  188. }
  189. // Performs the computation for this variable
  190. this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
  191. }
  192. this.currentTextureIndex = nextTextureIndex;
  193. };
  194. this.getCurrentRenderTarget = function ( variable ) {
  195. return variable.renderTargets[ this.currentTextureIndex ];
  196. };
  197. this.getAlternateRenderTarget = function ( variable ) {
  198. return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
  199. };
  200. function addResolutionDefine( materialShader ) {
  201. materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + " )";
  202. }
  203. this.addResolutionDefine = addResolutionDefine;
  204. // The following functions can be used to compute things manually
  205. function createShaderMaterial( computeFragmentShader, uniforms ) {
  206. uniforms = uniforms || {};
  207. var material = new THREE.ShaderMaterial( {
  208. uniforms: uniforms,
  209. vertexShader: getPassThroughVertexShader(),
  210. fragmentShader: computeFragmentShader
  211. } );
  212. addResolutionDefine( material );
  213. return material;
  214. }
  215. this.createShaderMaterial = createShaderMaterial;
  216. this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
  217. sizeXTexture = sizeXTexture || sizeX;
  218. sizeYTexture = sizeYTexture || sizeY;
  219. wrapS = wrapS || THREE.ClampToEdgeWrapping;
  220. wrapT = wrapT || THREE.ClampToEdgeWrapping;
  221. minFilter = minFilter || THREE.NearestFilter;
  222. magFilter = magFilter || THREE.NearestFilter;
  223. var renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {
  224. wrapS: wrapS,
  225. wrapT: wrapT,
  226. minFilter: minFilter,
  227. magFilter: magFilter,
  228. format: THREE.RGBAFormat,
  229. type: dataType,
  230. depthBuffer: false
  231. } );
  232. return renderTarget;
  233. };
  234. this.createTexture = function () {
  235. var data = new Float32Array( sizeX * sizeY * 4 );
  236. return new THREE.DataTexture( data, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );
  237. };
  238. this.renderTexture = function ( input, output ) {
  239. // Takes a texture, and render out in rendertarget
  240. // input = Texture
  241. // output = RenderTarget
  242. passThruUniforms.passThruTexture.value = input;
  243. this.doRenderTarget( passThruShader, output );
  244. passThruUniforms.passThruTexture.value = null;
  245. };
  246. this.doRenderTarget = function ( material, output ) {
  247. var currentRenderTarget = renderer.getRenderTarget();
  248. mesh.material = material;
  249. renderer.setRenderTarget( output );
  250. renderer.render( scene, camera );
  251. mesh.material = passThruShader;
  252. renderer.setRenderTarget( currentRenderTarget );
  253. };
  254. // Shaders
  255. function getPassThroughVertexShader() {
  256. return "void main() {\n" +
  257. "\n" +
  258. " gl_Position = vec4( position, 1.0 );\n" +
  259. "\n" +
  260. "}\n";
  261. }
  262. function getPassThroughFragmentShader() {
  263. return "uniform sampler2D passThruTexture;\n" +
  264. "\n" +
  265. "void main() {\n" +
  266. "\n" +
  267. " vec2 uv = gl_FragCoord.xy / resolution.xy;\n" +
  268. "\n" +
  269. " gl_FragColor = texture2D( passThruTexture, uv );\n" +
  270. "\n" +
  271. "}\n";
  272. }
  273. };