SSAARenderPass.js 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. /**
  2. *
  3. * Supersample Anti-Aliasing Render Pass
  4. *
  5. * This manual approach to SSAA re-renders the scene ones for each sample with camera jitter and accumulates the results.
  6. *
  7. * References: https://en.wikipedia.org/wiki/Supersampling
  8. *
  9. */
  10. THREE.SSAARenderPass = function ( scene, camera, clearColor, clearAlpha ) {
  11. THREE.Pass.call( this );
  12. this.scene = scene;
  13. this.camera = camera;
  14. this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16.
  15. this.unbiased = true;
  16. // as we need to clear the buffer in this pass, clearColor must be set to something, defaults to black.
  17. this.clearColor = ( clearColor !== undefined ) ? clearColor : 0x000000;
  18. this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0;
  19. if ( THREE.CopyShader === undefined ) console.error( "THREE.SSAARenderPass relies on THREE.CopyShader" );
  20. var copyShader = THREE.CopyShader;
  21. this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
  22. this.copyMaterial = new THREE.ShaderMaterial( {
  23. uniforms: this.copyUniforms,
  24. vertexShader: copyShader.vertexShader,
  25. fragmentShader: copyShader.fragmentShader,
  26. premultipliedAlpha: true,
  27. transparent: true,
  28. blending: THREE.AdditiveBlending,
  29. depthTest: false,
  30. depthWrite: false
  31. } );
  32. this.fsQuad = new THREE.Pass.FullScreenQuad( this.copyMaterial );
  33. };
  34. THREE.SSAARenderPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
  35. constructor: THREE.SSAARenderPass,
  36. dispose: function () {
  37. if ( this.sampleRenderTarget ) {
  38. this.sampleRenderTarget.dispose();
  39. this.sampleRenderTarget = null;
  40. }
  41. },
  42. setSize: function ( width, height ) {
  43. if ( this.sampleRenderTarget ) this.sampleRenderTarget.setSize( width, height );
  44. },
  45. render: function ( renderer, writeBuffer, readBuffer ) {
  46. if ( ! this.sampleRenderTarget ) {
  47. this.sampleRenderTarget = new THREE.WebGLRenderTarget( readBuffer.width, readBuffer.height, { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat } );
  48. this.sampleRenderTarget.texture.name = "SSAARenderPass.sample";
  49. }
  50. var jitterOffsets = THREE.SSAARenderPass.JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ];
  51. var autoClear = renderer.autoClear;
  52. renderer.autoClear = false;
  53. var oldClearColor = renderer.getClearColor().getHex();
  54. var oldClearAlpha = renderer.getClearAlpha();
  55. var baseSampleWeight = 1.0 / jitterOffsets.length;
  56. var roundingRange = 1 / 32;
  57. this.copyUniforms[ "tDiffuse" ].value = this.sampleRenderTarget.texture;
  58. var width = readBuffer.width, height = readBuffer.height;
  59. // render the scene multiple times, each slightly jitter offset from the last and accumulate the results.
  60. for ( var i = 0; i < jitterOffsets.length; i ++ ) {
  61. var jitterOffset = jitterOffsets[ i ];
  62. if ( this.camera.setViewOffset ) {
  63. this.camera.setViewOffset( width, height,
  64. jitterOffset[ 0 ] * 0.0625, jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16
  65. width, height );
  66. }
  67. var sampleWeight = baseSampleWeight;
  68. if ( this.unbiased ) {
  69. // the theory is that equal weights for each sample lead to an accumulation of rounding errors.
  70. // The following equation varies the sampleWeight per sample so that it is uniformly distributed
  71. // across a range of values whose rounding errors cancel each other out.
  72. var uniformCenteredDistribution = ( - 0.5 + ( i + 0.5 ) / jitterOffsets.length );
  73. sampleWeight += roundingRange * uniformCenteredDistribution;
  74. }
  75. this.copyUniforms[ "opacity" ].value = sampleWeight;
  76. renderer.setClearColor( this.clearColor, this.clearAlpha );
  77. renderer.setRenderTarget( this.sampleRenderTarget );
  78. renderer.clear();
  79. renderer.render( this.scene, this.camera );
  80. renderer.setRenderTarget( this.renderToScreen ? null : writeBuffer );
  81. if ( i === 0 ) {
  82. renderer.setClearColor( 0x000000, 0.0 );
  83. renderer.clear();
  84. }
  85. this.fsQuad.render( renderer );
  86. }
  87. if ( this.camera.clearViewOffset ) this.camera.clearViewOffset();
  88. renderer.autoClear = autoClear;
  89. renderer.setClearColor( oldClearColor, oldClearAlpha );
  90. }
  91. } );
  92. // These jitter vectors are specified in integers because it is easier.
  93. // I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5)
  94. // before being used, thus these integers need to be scaled by 1/16.
  95. //
  96. // Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
  97. THREE.SSAARenderPass.JitterVectors = [
  98. [
  99. [ 0, 0 ]
  100. ],
  101. [
  102. [ 4, 4 ], [ - 4, - 4 ]
  103. ],
  104. [
  105. [ - 2, - 6 ], [ 6, - 2 ], [ - 6, 2 ], [ 2, 6 ]
  106. ],
  107. [
  108. [ 1, - 3 ], [ - 1, 3 ], [ 5, 1 ], [ - 3, - 5 ],
  109. [ - 5, 5 ], [ - 7, - 1 ], [ 3, 7 ], [ 7, - 7 ]
  110. ],
  111. [
  112. [ 1, 1 ], [ - 1, - 3 ], [ - 3, 2 ], [ 4, - 1 ],
  113. [ - 5, - 2 ], [ 2, 5 ], [ 5, 3 ], [ 3, - 5 ],
  114. [ - 2, 6 ], [ 0, - 7 ], [ - 4, - 6 ], [ - 6, 4 ],
  115. [ - 8, 0 ], [ 7, - 4 ], [ 6, 7 ], [ - 7, - 8 ]
  116. ],
  117. [
  118. [ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ],
  119. [ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ],
  120. [ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ],
  121. [ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ],
  122. [ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ],
  123. [ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ],
  124. [ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ],
  125. [ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ]
  126. ]
  127. ];