GPUComputationRenderer.js 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. console.warn( "THREE.GPUComputationRenderer: As part of the transition to ES6 Modules, the files in 'examples/js' have been deprecated in r117 (May 2020) and will be deleted in r124 (December 2020). You can find more information about developing using ES6 Modules in https://threejs.org/docs/index.html#manual/en/introduction/Import-via-modules." );
  2. /**
  3. * @author yomboprime https://github.com/yomboprime
  4. *
  5. * GPUComputationRenderer, based on SimulationRenderer by zz85
  6. *
  7. * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
  8. * for each compute element (texel)
  9. *
  10. * Each variable has a fragment shader that defines the computation made to obtain the variable in question.
  11. * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
  12. * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
  13. *
  14. * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
  15. * as inputs to render the textures of the next frame.
  16. *
  17. * The render targets of the variables can be used as input textures for your visualization shaders.
  18. *
  19. * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
  20. * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
  21. *
  22. * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
  23. * #DEFINE resolution vec2( 1024.0, 1024.0 )
  24. *
  25. * -------------
  26. *
  27. * Basic use:
  28. *
  29. * // Initialization...
  30. *
  31. * // Create computation renderer
  32. * var gpuCompute = new THREE.GPUComputationRenderer( 1024, 1024, renderer );
  33. *
  34. * // Create initial state float textures
  35. * var pos0 = gpuCompute.createTexture();
  36. * var vel0 = gpuCompute.createTexture();
  37. * // and fill in here the texture data...
  38. *
  39. * // Add texture variables
  40. * var velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
  41. * var posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
  42. *
  43. * // Add variable dependencies
  44. * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
  45. * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
  46. *
  47. * // Add custom uniforms
  48. * velVar.material.uniforms.time = { value: 0.0 };
  49. *
  50. * // Check for completeness
  51. * var error = gpuCompute.init();
  52. * if ( error !== null ) {
  53. * console.error( error );
  54. * }
  55. *
  56. *
  57. * // In each frame...
  58. *
  59. * // Compute!
  60. * gpuCompute.compute();
  61. *
  62. * // Update texture uniforms in your visualization materials with the gpu renderer output
  63. * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
  64. *
  65. * // Do your rendering
  66. * renderer.render( myScene, myCamera );
  67. *
  68. * -------------
  69. *
  70. * Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)
  71. * Note that the shaders can have multiple input textures.
  72. *
  73. * var myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
  74. * var myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
  75. *
  76. * var inputTexture = gpuCompute.createTexture();
  77. *
  78. * // Fill in here inputTexture...
  79. *
  80. * myFilter1.uniforms.theTexture.value = inputTexture;
  81. *
  82. * var myRenderTarget = gpuCompute.createRenderTarget();
  83. * myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
  84. *
  85. * var outputRenderTarget = gpuCompute.createRenderTarget();
  86. *
  87. * // Now use the output texture where you want:
  88. * myMaterial.uniforms.map.value = outputRenderTarget.texture;
  89. *
  90. * // And compute each frame, before rendering to screen:
  91. * gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
  92. * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
  93. *
  94. *
  95. *
  96. * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
  97. * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
  98. * @param {WebGLRenderer} renderer The renderer
  99. */
  100. THREE.GPUComputationRenderer = function ( sizeX, sizeY, renderer ) {
  101. this.variables = [];
  102. this.currentTextureIndex = 0;
  103. var scene = new THREE.Scene();
  104. var camera = new THREE.Camera();
  105. camera.position.z = 1;
  106. var passThruUniforms = {
  107. passThruTexture: { value: null }
  108. };
  109. var passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
  110. var mesh = new THREE.Mesh( new THREE.PlaneBufferGeometry( 2, 2 ), passThruShader );
  111. scene.add( mesh );
  112. this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {
  113. var material = this.createShaderMaterial( computeFragmentShader );
  114. var variable = {
  115. name: variableName,
  116. initialValueTexture: initialValueTexture,
  117. material: material,
  118. dependencies: null,
  119. renderTargets: [],
  120. wrapS: null,
  121. wrapT: null,
  122. minFilter: THREE.NearestFilter,
  123. magFilter: THREE.NearestFilter
  124. };
  125. this.variables.push( variable );
  126. return variable;
  127. };
  128. this.setVariableDependencies = function ( variable, dependencies ) {
  129. variable.dependencies = dependencies;
  130. };
  131. this.init = function () {
  132. if ( ! renderer.capabilities.isWebGL2 &&
  133. ! renderer.extensions.get( "OES_texture_float" ) ) {
  134. return "No OES_texture_float support for float textures.";
  135. }
  136. if ( renderer.capabilities.maxVertexTextures === 0 ) {
  137. return "No support for vertex shader textures.";
  138. }
  139. for ( var i = 0; i < this.variables.length; i ++ ) {
  140. var variable = this.variables[ i ];
  141. // Creates rendertargets and initialize them with input texture
  142. variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
  143. variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
  144. this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
  145. this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );
  146. // Adds dependencies uniforms to the ShaderMaterial
  147. var material = variable.material;
  148. var uniforms = material.uniforms;
  149. if ( variable.dependencies !== null ) {
  150. for ( var d = 0; d < variable.dependencies.length; d ++ ) {
  151. var depVar = variable.dependencies[ d ];
  152. if ( depVar.name !== variable.name ) {
  153. // Checks if variable exists
  154. var found = false;
  155. for ( var j = 0; j < this.variables.length; j ++ ) {
  156. if ( depVar.name === this.variables[ j ].name ) {
  157. found = true;
  158. break;
  159. }
  160. }
  161. if ( ! found ) {
  162. return "Variable dependency not found. Variable=" + variable.name + ", dependency=" + depVar.name;
  163. }
  164. }
  165. uniforms[ depVar.name ] = { value: null };
  166. material.fragmentShader = "\nuniform sampler2D " + depVar.name + ";\n" + material.fragmentShader;
  167. }
  168. }
  169. }
  170. this.currentTextureIndex = 0;
  171. return null;
  172. };
  173. this.compute = function () {
  174. var currentTextureIndex = this.currentTextureIndex;
  175. var nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
  176. for ( var i = 0, il = this.variables.length; i < il; i ++ ) {
  177. var variable = this.variables[ i ];
  178. // Sets texture dependencies uniforms
  179. if ( variable.dependencies !== null ) {
  180. var uniforms = variable.material.uniforms;
  181. for ( var d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {
  182. var depVar = variable.dependencies[ d ];
  183. uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
  184. }
  185. }
  186. // Performs the computation for this variable
  187. this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
  188. }
  189. this.currentTextureIndex = nextTextureIndex;
  190. };
  191. this.getCurrentRenderTarget = function ( variable ) {
  192. return variable.renderTargets[ this.currentTextureIndex ];
  193. };
  194. this.getAlternateRenderTarget = function ( variable ) {
  195. return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
  196. };
  197. function addResolutionDefine( materialShader ) {
  198. materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + " )";
  199. }
  200. this.addResolutionDefine = addResolutionDefine;
  201. // The following functions can be used to compute things manually
  202. function createShaderMaterial( computeFragmentShader, uniforms ) {
  203. uniforms = uniforms || {};
  204. var material = new THREE.ShaderMaterial( {
  205. uniforms: uniforms,
  206. vertexShader: getPassThroughVertexShader(),
  207. fragmentShader: computeFragmentShader
  208. } );
  209. addResolutionDefine( material );
  210. return material;
  211. }
  212. this.createShaderMaterial = createShaderMaterial;
  213. this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
  214. sizeXTexture = sizeXTexture || sizeX;
  215. sizeYTexture = sizeYTexture || sizeY;
  216. wrapS = wrapS || THREE.ClampToEdgeWrapping;
  217. wrapT = wrapT || THREE.ClampToEdgeWrapping;
  218. minFilter = minFilter || THREE.NearestFilter;
  219. magFilter = magFilter || THREE.NearestFilter;
  220. var renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {
  221. wrapS: wrapS,
  222. wrapT: wrapT,
  223. minFilter: minFilter,
  224. magFilter: magFilter,
  225. format: THREE.RGBAFormat,
  226. type: ( /(iPad|iPhone|iPod)/g.test( navigator.userAgent ) ) ? THREE.HalfFloatType : THREE.FloatType,
  227. stencilBuffer: false,
  228. depthBuffer: false
  229. } );
  230. return renderTarget;
  231. };
  232. this.createTexture = function () {
  233. var data = new Float32Array( sizeX * sizeY * 4 );
  234. return new THREE.DataTexture( data, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );
  235. };
  236. this.renderTexture = function ( input, output ) {
  237. // Takes a texture, and render out in rendertarget
  238. // input = Texture
  239. // output = RenderTarget
  240. passThruUniforms.passThruTexture.value = input;
  241. this.doRenderTarget( passThruShader, output );
  242. passThruUniforms.passThruTexture.value = null;
  243. };
  244. this.doRenderTarget = function ( material, output ) {
  245. var currentRenderTarget = renderer.getRenderTarget();
  246. mesh.material = material;
  247. renderer.setRenderTarget( output );
  248. renderer.render( scene, camera );
  249. mesh.material = passThruShader;
  250. renderer.setRenderTarget( currentRenderTarget );
  251. };
  252. // Shaders
  253. function getPassThroughVertexShader() {
  254. return "void main() {\n" +
  255. "\n" +
  256. " gl_Position = vec4( position, 1.0 );\n" +
  257. "\n" +
  258. "}\n";
  259. }
  260. function getPassThroughFragmentShader() {
  261. return "uniform sampler2D passThruTexture;\n" +
  262. "\n" +
  263. "void main() {\n" +
  264. "\n" +
  265. " vec2 uv = gl_FragCoord.xy / resolution.xy;\n" +
  266. "\n" +
  267. " gl_FragColor = texture2D( passThruTexture, uv );\n" +
  268. "\n" +
  269. "}\n";
  270. }
  271. };