123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699 |
- ( function () {
- /**
- * Octahedron and Quantization encodings based on work by:
- *
- * @link https://github.com/tsherif/mesh-quantization-example
- *
- */
- class GeometryCompressionUtils {
- /**
- * Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods.
- * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data.
- *
- * @param {THREE.Mesh} mesh
- * @param {String} encodeMethod "DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES"
- *
- */
- static compressNormals( mesh, encodeMethod ) {
- if ( ! mesh.geometry ) {
- console.error( 'Mesh must contain geometry. ' );
- }
- const normal = mesh.geometry.attributes.normal;
- if ( ! normal ) {
- console.error( 'Geometry must contain normal attribute. ' );
- }
- if ( normal.isPacked ) return;
- if ( normal.itemSize != 3 ) {
- console.error( 'normal.itemSize is not 3, which cannot be encoded. ' );
- }
- const array = normal.array;
- const count = normal.count;
- let result;
- if ( encodeMethod == 'DEFAULT' ) {
- // TODO: Add 1 byte to the result, making the encoded length to be 4 bytes.
- result = new Uint8Array( count * 3 );
- for ( let idx = 0; idx < array.length; idx += 3 ) {
- const encoded = EncodingFuncs.defaultEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );
- result[ idx + 0 ] = encoded[ 0 ];
- result[ idx + 1 ] = encoded[ 1 ];
- result[ idx + 2 ] = encoded[ 2 ];
- }
- mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 3, true ) );
- mesh.geometry.attributes.normal.bytes = result.length * 1;
- } else if ( encodeMethod == 'OCT1Byte' ) {
- /**
- * It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage
- * As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible
- * Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208
- */
- result = new Int8Array( count * 2 );
- for ( let idx = 0; idx < array.length; idx += 3 ) {
- const encoded = EncodingFuncs.octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );
- result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
- result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
- }
- mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );
- mesh.geometry.attributes.normal.bytes = result.length * 1;
- } else if ( encodeMethod == 'OCT2Byte' ) {
- result = new Int16Array( count * 2 );
- for ( let idx = 0; idx < array.length; idx += 3 ) {
- const encoded = EncodingFuncs.octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 2 );
- result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
- result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
- }
- mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );
- mesh.geometry.attributes.normal.bytes = result.length * 2;
- } else if ( encodeMethod == 'ANGLES' ) {
- result = new Uint16Array( count * 2 );
- for ( let idx = 0; idx < array.length; idx += 3 ) {
- const encoded = EncodingFuncs.anglesEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ] );
- result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
- result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
- }
- mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );
- mesh.geometry.attributes.normal.bytes = result.length * 2;
- } else {
- console.error( 'Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ' );
- }
- mesh.geometry.attributes.normal.needsUpdate = true;
- mesh.geometry.attributes.normal.isPacked = true;
- mesh.geometry.attributes.normal.packingMethod = encodeMethod; // modify material
- if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) {
- mesh.material = new PackedPhongMaterial().copy( mesh.material );
- }
- if ( encodeMethod == 'ANGLES' ) {
- mesh.material.defines.USE_PACKED_NORMAL = 0;
- }
- if ( encodeMethod == 'OCT1Byte' ) {
- mesh.material.defines.USE_PACKED_NORMAL = 1;
- }
- if ( encodeMethod == 'OCT2Byte' ) {
- mesh.material.defines.USE_PACKED_NORMAL = 1;
- }
- if ( encodeMethod == 'DEFAULT' ) {
- mesh.material.defines.USE_PACKED_NORMAL = 2;
- }
- }
- /**
- * Make the input mesh.geometry's position attribute encoded and compressed.
- * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data.
- *
- * @param {THREE.Mesh} mesh
- *
- */
- static compressPositions( mesh ) {
- if ( ! mesh.geometry ) {
- console.error( 'Mesh must contain geometry. ' );
- }
- const position = mesh.geometry.attributes.position;
- if ( ! position ) {
- console.error( 'Geometry must contain position attribute. ' );
- }
- if ( position.isPacked ) return;
- if ( position.itemSize != 3 ) {
- console.error( 'position.itemSize is not 3, which cannot be packed. ' );
- }
- const array = position.array;
- const encodingBytes = 2;
- const result = EncodingFuncs.quantizedEncode( array, encodingBytes );
- const quantized = result.quantized;
- const decodeMat = result.decodeMat; // IMPORTANT: calculate original geometry bounding info first, before updating packed positions
- if ( mesh.geometry.boundingBox == null ) mesh.geometry.computeBoundingBox();
- if ( mesh.geometry.boundingSphere == null ) mesh.geometry.computeBoundingSphere();
- mesh.geometry.setAttribute( 'position', new THREE.BufferAttribute( quantized, 3 ) );
- mesh.geometry.attributes.position.isPacked = true;
- mesh.geometry.attributes.position.needsUpdate = true;
- mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes; // modify material
- if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) {
- mesh.material = new PackedPhongMaterial().copy( mesh.material );
- }
- mesh.material.defines.USE_PACKED_POSITION = 0;
- mesh.material.uniforms.quantizeMatPos.value = decodeMat;
- mesh.material.uniforms.quantizeMatPos.needsUpdate = true;
- }
- /**
- * Make the input mesh.geometry's uv attribute encoded and compressed.
- * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data.
- *
- * @param {THREE.Mesh} mesh
- *
- */
- static compressUvs( mesh ) {
- if ( ! mesh.geometry ) {
- console.error( 'Mesh must contain geometry property. ' );
- }
- const uvs = mesh.geometry.attributes.uv;
- if ( ! uvs ) {
- console.error( 'Geometry must contain uv attribute. ' );
- }
- if ( uvs.isPacked ) return;
- const range = {
- min: Infinity,
- max: - Infinity
- };
- const array = uvs.array;
- for ( let i = 0; i < array.length; i ++ ) {
- range.min = Math.min( range.min, array[ i ] );
- range.max = Math.max( range.max, array[ i ] );
- }
- let result;
- if ( range.min >= - 1.0 && range.max <= 1.0 ) {
- // use default encoding method
- result = new Uint16Array( array.length );
- for ( let i = 0; i < array.length; i += 2 ) {
- const encoded = EncodingFuncs.defaultEncode( array[ i ], array[ i + 1 ], 0, 2 );
- result[ i ] = encoded[ 0 ];
- result[ i + 1 ] = encoded[ 1 ];
- }
- mesh.geometry.setAttribute( 'uv', new THREE.BufferAttribute( result, 2, true ) );
- mesh.geometry.attributes.uv.isPacked = true;
- mesh.geometry.attributes.uv.needsUpdate = true;
- mesh.geometry.attributes.uv.bytes = result.length * 2;
- if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) {
- mesh.material = new PackedPhongMaterial().copy( mesh.material );
- }
- mesh.material.defines.USE_PACKED_UV = 0;
- } else {
- // use quantized encoding method
- result = EncodingFuncs.quantizedEncodeUV( array, 2 );
- mesh.geometry.setAttribute( 'uv', new THREE.BufferAttribute( result.quantized, 2 ) );
- mesh.geometry.attributes.uv.isPacked = true;
- mesh.geometry.attributes.uv.needsUpdate = true;
- mesh.geometry.attributes.uv.bytes = result.quantized.length * 2;
- if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) {
- mesh.material = new PackedPhongMaterial().copy( mesh.material );
- }
- mesh.material.defines.USE_PACKED_UV = 1;
- mesh.material.uniforms.quantizeMatUV.value = result.decodeMat;
- mesh.material.uniforms.quantizeMatUV.needsUpdate = true;
- }
- }
- }
- class EncodingFuncs {
- static defaultEncode( x, y, z, bytes ) {
- if ( bytes == 1 ) {
- const tmpx = Math.round( ( x + 1 ) * 0.5 * 255 );
- const tmpy = Math.round( ( y + 1 ) * 0.5 * 255 );
- const tmpz = Math.round( ( z + 1 ) * 0.5 * 255 );
- return new Uint8Array( [ tmpx, tmpy, tmpz ] );
- } else if ( bytes == 2 ) {
- const tmpx = Math.round( ( x + 1 ) * 0.5 * 65535 );
- const tmpy = Math.round( ( y + 1 ) * 0.5 * 65535 );
- const tmpz = Math.round( ( z + 1 ) * 0.5 * 65535 );
- return new Uint16Array( [ tmpx, tmpy, tmpz ] );
- } else {
- console.error( 'number of bytes must be 1 or 2' );
- }
- }
- static defaultDecode( array, bytes ) {
- if ( bytes == 1 ) {
- return [ array[ 0 ] / 255 * 2.0 - 1.0, array[ 1 ] / 255 * 2.0 - 1.0, array[ 2 ] / 255 * 2.0 - 1.0 ];
- } else if ( bytes == 2 ) {
- return [ array[ 0 ] / 65535 * 2.0 - 1.0, array[ 1 ] / 65535 * 2.0 - 1.0, array[ 2 ] / 65535 * 2.0 - 1.0 ];
- } else {
- console.error( 'number of bytes must be 1 or 2' );
- }
- } // for `Angles` encoding
- static anglesEncode( x, y, z ) {
- const normal0 = parseInt( 0.5 * ( 1.0 + Math.atan2( y, x ) / Math.PI ) * 65535 );
- const normal1 = parseInt( 0.5 * ( 1.0 + z ) * 65535 );
- return new Uint16Array( [ normal0, normal1 ] );
- } // for `Octahedron` encoding
- static octEncodeBest( x, y, z, bytes ) {
- let oct, dec, best, currentCos, bestCos; // Test various combinations of ceil and floor
- // to minimize rounding errors
- best = oct = octEncodeVec3( x, y, z, 'floor', 'floor' );
- dec = octDecodeVec2( oct );
- bestCos = dot( x, y, z, dec );
- oct = octEncodeVec3( x, y, z, 'ceil', 'floor' );
- dec = octDecodeVec2( oct );
- currentCos = dot( x, y, z, dec );
- if ( currentCos > bestCos ) {
- best = oct;
- bestCos = currentCos;
- }
- oct = octEncodeVec3( x, y, z, 'floor', 'ceil' );
- dec = octDecodeVec2( oct );
- currentCos = dot( x, y, z, dec );
- if ( currentCos > bestCos ) {
- best = oct;
- bestCos = currentCos;
- }
- oct = octEncodeVec3( x, y, z, 'ceil', 'ceil' );
- dec = octDecodeVec2( oct );
- currentCos = dot( x, y, z, dec );
- if ( currentCos > bestCos ) {
- best = oct;
- }
- return best;
- function octEncodeVec3( x0, y0, z0, xfunc, yfunc ) {
- let x = x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );
- let y = y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );
- if ( z < 0 ) {
- const tempx = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );
- const tempy = ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 );
- x = tempx;
- y = tempy;
- let diff = 1 - Math.abs( x ) - Math.abs( y );
- if ( diff > 0 ) {
- diff += 0.001;
- x += x > 0 ? diff / 2 : - diff / 2;
- y += y > 0 ? diff / 2 : - diff / 2;
- }
- }
- if ( bytes == 1 ) {
- return new Int8Array( [ Math[ xfunc ]( x * 127.5 + ( x < 0 ? 1 : 0 ) ), Math[ yfunc ]( y * 127.5 + ( y < 0 ? 1 : 0 ) ) ] );
- }
- if ( bytes == 2 ) {
- return new Int16Array( [ Math[ xfunc ]( x * 32767.5 + ( x < 0 ? 1 : 0 ) ), Math[ yfunc ]( y * 32767.5 + ( y < 0 ? 1 : 0 ) ) ] );
- }
- }
- function octDecodeVec2( oct ) {
- let x = oct[ 0 ];
- let y = oct[ 1 ];
- if ( bytes == 1 ) {
- x /= x < 0 ? 127 : 128;
- y /= y < 0 ? 127 : 128;
- } else if ( bytes == 2 ) {
- x /= x < 0 ? 32767 : 32768;
- y /= y < 0 ? 32767 : 32768;
- }
- const z = 1 - Math.abs( x ) - Math.abs( y );
- if ( z < 0 ) {
- const tmpx = x;
- x = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );
- y = ( 1 - Math.abs( tmpx ) ) * ( y >= 0 ? 1 : - 1 );
- }
- const length = Math.sqrt( x * x + y * y + z * z );
- return [ x / length, y / length, z / length ];
- }
- function dot( x, y, z, vec3 ) {
- return x * vec3[ 0 ] + y * vec3[ 1 ] + z * vec3[ 2 ];
- }
- }
- static quantizedEncode( array, bytes ) {
- let quantized, segments;
- if ( bytes == 1 ) {
- quantized = new Uint8Array( array.length );
- segments = 255;
- } else if ( bytes == 2 ) {
- quantized = new Uint16Array( array.length );
- segments = 65535;
- } else {
- console.error( 'number of bytes error! ' );
- }
- const decodeMat = new THREE.Matrix4();
- const min = new Float32Array( 3 );
- const max = new Float32Array( 3 );
- min[ 0 ] = min[ 1 ] = min[ 2 ] = Number.MAX_VALUE;
- max[ 0 ] = max[ 1 ] = max[ 2 ] = - Number.MAX_VALUE;
- for ( let i = 0; i < array.length; i += 3 ) {
- min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );
- min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );
- min[ 2 ] = Math.min( min[ 2 ], array[ i + 2 ] );
- max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );
- max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );
- max[ 2 ] = Math.max( max[ 2 ], array[ i + 2 ] );
- }
- decodeMat.scale( new THREE.Vector3( ( max[ 0 ] - min[ 0 ] ) / segments, ( max[ 1 ] - min[ 1 ] ) / segments, ( max[ 2 ] - min[ 2 ] ) / segments ) );
- decodeMat.elements[ 12 ] = min[ 0 ];
- decodeMat.elements[ 13 ] = min[ 1 ];
- decodeMat.elements[ 14 ] = min[ 2 ];
- decodeMat.transpose();
- const multiplier = new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0, max[ 2 ] !== min[ 2 ] ? segments / ( max[ 2 ] - min[ 2 ] ) : 0 ] );
- for ( let i = 0; i < array.length; i += 3 ) {
- quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );
- quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );
- quantized[ i + 2 ] = Math.floor( ( array[ i + 2 ] - min[ 2 ] ) * multiplier[ 2 ] );
- }
- return {
- quantized: quantized,
- decodeMat: decodeMat
- };
- }
- static quantizedEncodeUV( array, bytes ) {
- let quantized, segments;
- if ( bytes == 1 ) {
- quantized = new Uint8Array( array.length );
- segments = 255;
- } else if ( bytes == 2 ) {
- quantized = new Uint16Array( array.length );
- segments = 65535;
- } else {
- console.error( 'number of bytes error! ' );
- }
- const decodeMat = new THREE.Matrix3();
- const min = new Float32Array( 2 );
- const max = new Float32Array( 2 );
- min[ 0 ] = min[ 1 ] = Number.MAX_VALUE;
- max[ 0 ] = max[ 1 ] = - Number.MAX_VALUE;
- for ( let i = 0; i < array.length; i += 2 ) {
- min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );
- min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );
- max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );
- max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );
- }
- decodeMat.scale( ( max[ 0 ] - min[ 0 ] ) / segments, ( max[ 1 ] - min[ 1 ] ) / segments );
- decodeMat.elements[ 6 ] = min[ 0 ];
- decodeMat.elements[ 7 ] = min[ 1 ];
- decodeMat.transpose();
- const multiplier = new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0 ] );
- for ( let i = 0; i < array.length; i += 2 ) {
- quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );
- quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );
- }
- return {
- quantized: quantized,
- decodeMat: decodeMat
- };
- }
- }
- /**
- * `PackedPhongMaterial` inherited from THREE.MeshPhongMaterial
- *
- * @param {Object} parameters
- */
- class PackedPhongMaterial extends THREE.MeshPhongMaterial {
- constructor( parameters ) {
- super();
- this.defines = {};
- this.type = 'PackedPhongMaterial';
- this.uniforms = THREE.UniformsUtils.merge( [ THREE.ShaderLib.phong.uniforms, {
- quantizeMatPos: {
- value: null
- },
- quantizeMatUV: {
- value: null
- }
- } ] );
- this.vertexShader = [ '#define PHONG', 'varying vec3 vViewPosition;', '#ifndef FLAT_SHADED', 'varying vec3 vNormal;', '#endif', THREE.ShaderChunk.common, THREE.ShaderChunk.uv_pars_vertex, THREE.ShaderChunk.uv2_pars_vertex, THREE.ShaderChunk.displacementmap_pars_vertex, THREE.ShaderChunk.envmap_pars_vertex, THREE.ShaderChunk.color_pars_vertex, THREE.ShaderChunk.fog_pars_vertex, THREE.ShaderChunk.morphtarget_pars_vertex, THREE.ShaderChunk.skinning_pars_vertex, THREE.ShaderChunk.shadowmap_pars_vertex, THREE.ShaderChunk.logdepthbuf_pars_vertex, THREE.ShaderChunk.clipping_planes_pars_vertex, `#ifdef USE_PACKED_NORMAL
- #if USE_PACKED_NORMAL == 0
- vec3 decodeNormal(vec3 packedNormal)
- {
- float x = packedNormal.x * 2.0 - 1.0;
- float y = packedNormal.y * 2.0 - 1.0;
- vec2 scth = vec2(sin(x * PI), cos(x * PI));
- vec2 scphi = vec2(sqrt(1.0 - y * y), y);
- return normalize( vec3(scth.y * scphi.x, scth.x * scphi.x, scphi.y) );
- }
- #endif
- #if USE_PACKED_NORMAL == 1
- vec3 decodeNormal(vec3 packedNormal)
- {
- vec3 v = vec3(packedNormal.xy, 1.0 - abs(packedNormal.x) - abs(packedNormal.y));
- if (v.z < 0.0)
- {
- v.xy = (1.0 - abs(v.yx)) * vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);
- }
- return normalize(v);
- }
- #endif
- #if USE_PACKED_NORMAL == 2
- vec3 decodeNormal(vec3 packedNormal)
- {
- vec3 v = (packedNormal * 2.0) - 1.0;
- return normalize(v);
- }
- #endif
- #endif`, `#ifdef USE_PACKED_POSITION
- #if USE_PACKED_POSITION == 0
- uniform mat4 quantizeMatPos;
- #endif
- #endif`, `#ifdef USE_PACKED_UV
- #if USE_PACKED_UV == 1
- uniform mat3 quantizeMatUV;
- #endif
- #endif`, `#ifdef USE_PACKED_UV
- #if USE_PACKED_UV == 0
- vec2 decodeUV(vec2 packedUV)
- {
- vec2 uv = (packedUV * 2.0) - 1.0;
- return uv;
- }
- #endif
- #if USE_PACKED_UV == 1
- vec2 decodeUV(vec2 packedUV)
- {
- vec2 uv = ( vec3(packedUV, 1.0) * quantizeMatUV ).xy;
- return uv;
- }
- #endif
- #endif`, 'void main() {', THREE.ShaderChunk.uv_vertex, `#ifdef USE_UV
- #ifdef USE_PACKED_UV
- vUv = decodeUV(vUv);
- #endif
- #endif`, THREE.ShaderChunk.uv2_vertex, THREE.ShaderChunk.color_vertex, THREE.ShaderChunk.beginnormal_vertex, `#ifdef USE_PACKED_NORMAL
- objectNormal = decodeNormal(objectNormal);
- #endif
- #ifdef USE_TANGENT
- vec3 objectTangent = vec3( tangent.xyz );
- #endif
- `, THREE.ShaderChunk.morphnormal_vertex, THREE.ShaderChunk.skinbase_vertex, THREE.ShaderChunk.skinnormal_vertex, THREE.ShaderChunk.defaultnormal_vertex, '#ifndef FLAT_SHADED', ' vNormal = normalize( transformedNormal );', '#endif', THREE.ShaderChunk.begin_vertex, `#ifdef USE_PACKED_POSITION
- #if USE_PACKED_POSITION == 0
- transformed = ( vec4(transformed, 1.0) * quantizeMatPos ).xyz;
- #endif
- #endif`, THREE.ShaderChunk.morphtarget_vertex, THREE.ShaderChunk.skinning_vertex, THREE.ShaderChunk.displacementmap_vertex, THREE.ShaderChunk.project_vertex, THREE.ShaderChunk.logdepthbuf_vertex, THREE.ShaderChunk.clipping_planes_vertex, 'vViewPosition = - mvPosition.xyz;', THREE.ShaderChunk.worldpos_vertex, THREE.ShaderChunk.envmap_vertex, THREE.ShaderChunk.shadowmap_vertex, THREE.ShaderChunk.fog_vertex, '}' ].join( '\n' ); // Use the original THREE.MeshPhongMaterial's fragmentShader.
- this.fragmentShader = [ '#define PHONG', 'uniform vec3 diffuse;', 'uniform vec3 emissive;', 'uniform vec3 specular;', 'uniform float shininess;', 'uniform float opacity;', THREE.ShaderChunk.common, THREE.ShaderChunk.packing, THREE.ShaderChunk.dithering_pars_fragment, THREE.ShaderChunk.color_pars_fragment, THREE.ShaderChunk.uv_pars_fragment, THREE.ShaderChunk.uv2_pars_fragment, THREE.ShaderChunk.map_pars_fragment, THREE.ShaderChunk.alphamap_pars_fragment, THREE.ShaderChunk.aomap_pars_fragment, THREE.ShaderChunk.lightmap_pars_fragment, THREE.ShaderChunk.emissivemap_pars_fragment, THREE.ShaderChunk.envmap_common_pars_fragment, THREE.ShaderChunk.envmap_pars_fragment, THREE.ShaderChunk.cube_uv_reflection_fragment, THREE.ShaderChunk.fog_pars_fragment, THREE.ShaderChunk.bsdfs, THREE.ShaderChunk.lights_pars_begin, THREE.ShaderChunk.lights_phong_pars_fragment, THREE.ShaderChunk.shadowmap_pars_fragment, THREE.ShaderChunk.bumpmap_pars_fragment, THREE.ShaderChunk.normalmap_pars_fragment, THREE.ShaderChunk.specularmap_pars_fragment, THREE.ShaderChunk.logdepthbuf_pars_fragment, THREE.ShaderChunk.clipping_planes_pars_fragment, 'void main() {', THREE.ShaderChunk.clipping_planes_fragment, 'vec4 diffuseColor = vec4( diffuse, opacity );', 'ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );', 'vec3 totalEmissiveRadiance = emissive;', THREE.ShaderChunk.logdepthbuf_fragment, THREE.ShaderChunk.map_fragment, THREE.ShaderChunk.color_fragment, THREE.ShaderChunk.alphamap_fragment, THREE.ShaderChunk.alphatest_fragment, THREE.ShaderChunk.specularmap_fragment, THREE.ShaderChunk.normal_fragment_begin, THREE.ShaderChunk.normal_fragment_maps, THREE.ShaderChunk.emissivemap_fragment, // accumulation
- THREE.ShaderChunk.lights_phong_fragment, THREE.ShaderChunk.lights_fragment_begin, THREE.ShaderChunk.lights_fragment_maps, THREE.ShaderChunk.lights_fragment_end, // modulation
- THREE.ShaderChunk.aomap_fragment, 'vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;', THREE.ShaderChunk.envmap_fragment, 'gl_FragColor = vec4( outgoingLight, diffuseColor.a );', THREE.ShaderChunk.tonemapping_fragment, THREE.ShaderChunk.encodings_fragment, THREE.ShaderChunk.fog_fragment, THREE.ShaderChunk.premultiplied_alpha_fragment, THREE.ShaderChunk.dithering_fragment, '}' ].join( '\n' );
- this.setValues( parameters );
- }
- }
- THREE.GeometryCompressionUtils = GeometryCompressionUtils;
- THREE.PackedPhongMaterial = PackedPhongMaterial;
- } )();
|