123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- ( function () {
- /**
- * Based on "A Practical Analytic Model for Daylight"
- * aka The Preetham Model, the de facto standard analytic skydome model
- * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
- *
- * First implemented by Simon Wallner
- * http://www.simonwallner.at/projects/atmospheric-scattering
- *
- * Improved by Martin Upitis
- * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
- *
- * Three.js integration by zz85 http://twitter.com/blurspline
- */
- class Sky extends THREE.Mesh {
- constructor() {
- const shader = Sky.SkyShader;
- const material = new THREE.ShaderMaterial( {
- name: 'SkyShader',
- fragmentShader: shader.fragmentShader,
- vertexShader: shader.vertexShader,
- uniforms: THREE.UniformsUtils.clone( shader.uniforms ),
- side: THREE.BackSide,
- depthWrite: false
- } );
- super( new THREE.BoxGeometry( 1, 1, 1 ), material );
- }
- }
- Sky.prototype.isSky = true;
- Sky.SkyShader = {
- uniforms: {
- 'turbidity': {
- value: 2
- },
- 'rayleigh': {
- value: 1
- },
- 'mieCoefficient': {
- value: 0.005
- },
- 'mieDirectionalG': {
- value: 0.8
- },
- 'sunPosition': {
- value: new THREE.Vector3()
- },
- 'up': {
- value: new THREE.Vector3( 0, 1, 0 )
- }
- },
- vertexShader: [ 'uniform vec3 sunPosition;', 'uniform float rayleigh;', 'uniform float turbidity;', 'uniform float mieCoefficient;', 'uniform vec3 up;', 'varying vec3 vWorldPosition;', 'varying vec3 vSunDirection;', 'varying float vSunfade;', 'varying vec3 vBetaR;', 'varying vec3 vBetaM;', 'varying float vSunE;', // constants for atmospheric scattering
- 'const float e = 2.71828182845904523536028747135266249775724709369995957;', 'const float pi = 3.141592653589793238462643383279502884197169;', // wavelength of used primaries, according to preetham
- 'const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );', // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
- // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
- 'const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );', // mie stuff
- // K coefficient for the primaries
- 'const float v = 4.0;', 'const vec3 K = vec3( 0.686, 0.678, 0.666 );', // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
- 'const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );', // earth shadow hack
- // cutoffAngle = pi / 1.95;
- 'const float cutoffAngle = 1.6110731556870734;', 'const float steepness = 1.5;', 'const float EE = 1000.0;', 'float sunIntensity( float zenithAngleCos ) {', ' zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );', ' return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );', '}', 'vec3 totalMie( float T ) {', ' float c = ( 0.2 * T ) * 10E-18;', ' return 0.434 * c * MieConst;', '}', 'void main() {', ' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );', ' vWorldPosition = worldPosition.xyz;', ' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );', ' gl_Position.z = gl_Position.w;', // set z to camera.far
- ' vSunDirection = normalize( sunPosition );', ' vSunE = sunIntensity( dot( vSunDirection, up ) );', ' vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );', ' float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );', // extinction (absorbtion + out scattering)
- // rayleigh coefficients
- ' vBetaR = totalRayleigh * rayleighCoefficient;', // mie coefficients
- ' vBetaM = totalMie( turbidity ) * mieCoefficient;', '}' ].join( '\n' ),
- fragmentShader: [ 'varying vec3 vWorldPosition;', 'varying vec3 vSunDirection;', 'varying float vSunfade;', 'varying vec3 vBetaR;', 'varying vec3 vBetaM;', 'varying float vSunE;', 'uniform float mieDirectionalG;', 'uniform vec3 up;', 'const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );', // constants for atmospheric scattering
- 'const float pi = 3.141592653589793238462643383279502884197169;', 'const float n = 1.0003;', // refractive index of air
- 'const float N = 2.545E25;', // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
- // optical length at zenith for molecules
- 'const float rayleighZenithLength = 8.4E3;', 'const float mieZenithLength = 1.25E3;', // 66 arc seconds -> degrees, and the cosine of that
- 'const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;', // 3.0 / ( 16.0 * pi )
- 'const float THREE_OVER_SIXTEENPI = 0.05968310365946075;', // 1.0 / ( 4.0 * pi )
- 'const float ONE_OVER_FOURPI = 0.07957747154594767;', 'float rayleighPhase( float cosTheta ) {', ' return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );', '}', 'float hgPhase( float cosTheta, float g ) {', ' float g2 = pow( g, 2.0 );', ' float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );', ' return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );', '}', 'void main() {', ' vec3 direction = normalize( vWorldPosition - cameraPos );', // optical length
- // cutoff angle at 90 to avoid singularity in next formula.
- ' float zenithAngle = acos( max( 0.0, dot( up, direction ) ) );', ' float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );', ' float sR = rayleighZenithLength * inverse;', ' float sM = mieZenithLength * inverse;', // combined extinction factor
- ' vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );', // in scattering
- ' float cosTheta = dot( direction, vSunDirection );', ' float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );', ' vec3 betaRTheta = vBetaR * rPhase;', ' float mPhase = hgPhase( cosTheta, mieDirectionalG );', ' vec3 betaMTheta = vBetaM * mPhase;', ' vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );', ' Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );', // nightsky
- ' float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]', ' float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]', ' vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );', ' vec3 L0 = vec3( 0.1 ) * Fex;', // composition + solar disc
- ' float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );', ' L0 += ( vSunE * 19000.0 * Fex ) * sundisk;', ' vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );', ' vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );', ' gl_FragColor = vec4( retColor, 1.0 );', '#include <tonemapping_fragment>', '#include <encodings_fragment>', '}' ].join( '\n' )
- };
- THREE.Sky = Sky;
- } )();
|