2
0

OceanShaders.js 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. // Description: A deep water ocean shader set
  2. // based on an implementation of a Tessendorf Waves
  3. // originally presented by David Li ( www.david.li/waves )
  4. // The general method is to apply shaders to simulation Framebuffers
  5. // and then sample these framebuffers when rendering the ocean mesh
  6. // The set uses 7 shaders:
  7. // -- Simulation shaders
  8. // [1] ocean_sim_vertex -> Vertex shader used to set up a 2x2 simulation plane centered at (0,0)
  9. // [2] ocean_subtransform -> Fragment shader used to subtransform the mesh (generates the displacement map)
  10. // [3] ocean_initial_spectrum -> Fragment shader used to set intitial wave frequency at a texel coordinate
  11. // [4] ocean_phase -> Fragment shader used to set wave phase at a texel coordinate
  12. // [5] ocean_spectrum -> Fragment shader used to set current wave frequency at a texel coordinate
  13. // [6] ocean_normal -> Fragment shader used to set face normals at a texel coordinate
  14. // -- Rendering Shader
  15. // [7] ocean_main -> Vertex and Fragment shader used to create the final render
  16. THREE.OceanShaders = {};
  17. THREE.OceanShaders[ 'ocean_sim_vertex' ] = {
  18. vertexShader: [
  19. 'varying vec2 vUV;',
  20. 'void main (void) {',
  21. ' vUV = position.xy * 0.5 + 0.5;',
  22. ' gl_Position = vec4(position, 1.0 );',
  23. '}'
  24. ].join( '\n' )
  25. };
  26. THREE.OceanShaders[ 'ocean_subtransform' ] = {
  27. uniforms: {
  28. 'u_input': { value: null },
  29. 'u_transformSize': { value: 512.0 },
  30. 'u_subtransformSize': { value: 250.0 }
  31. },
  32. fragmentShader: [
  33. //GPU FFT using a Stockham formulation
  34. 'precision highp float;',
  35. '#include <common>',
  36. 'uniform sampler2D u_input;',
  37. 'uniform float u_transformSize;',
  38. 'uniform float u_subtransformSize;',
  39. 'varying vec2 vUV;',
  40. 'vec2 multiplyComplex (vec2 a, vec2 b) {',
  41. ' return vec2(a[0] * b[0] - a[1] * b[1], a[1] * b[0] + a[0] * b[1]);',
  42. '}',
  43. 'void main (void) {',
  44. ' #ifdef HORIZONTAL',
  45. ' float index = vUV.x * u_transformSize - 0.5;',
  46. ' #else',
  47. ' float index = vUV.y * u_transformSize - 0.5;',
  48. ' #endif',
  49. ' float evenIndex = floor(index / u_subtransformSize) * (u_subtransformSize * 0.5) + mod(index, u_subtransformSize * 0.5);',
  50. //transform two complex sequences simultaneously
  51. ' #ifdef HORIZONTAL',
  52. ' vec4 even = texture2D(u_input, vec2(evenIndex + 0.5, gl_FragCoord.y) / u_transformSize).rgba;',
  53. ' vec4 odd = texture2D(u_input, vec2(evenIndex + u_transformSize * 0.5 + 0.5, gl_FragCoord.y) / u_transformSize).rgba;',
  54. ' #else',
  55. ' vec4 even = texture2D(u_input, vec2(gl_FragCoord.x, evenIndex + 0.5) / u_transformSize).rgba;',
  56. ' vec4 odd = texture2D(u_input, vec2(gl_FragCoord.x, evenIndex + u_transformSize * 0.5 + 0.5) / u_transformSize).rgba;',
  57. ' #endif',
  58. ' float twiddleArgument = -2.0 * PI * (index / u_subtransformSize);',
  59. ' vec2 twiddle = vec2(cos(twiddleArgument), sin(twiddleArgument));',
  60. ' vec2 outputA = even.xy + multiplyComplex(twiddle, odd.xy);',
  61. ' vec2 outputB = even.zw + multiplyComplex(twiddle, odd.zw);',
  62. ' gl_FragColor = vec4(outputA, outputB);',
  63. '}'
  64. ].join( '\n' )
  65. };
  66. THREE.OceanShaders[ 'ocean_initial_spectrum' ] = {
  67. uniforms: {
  68. 'u_wind': { value: new THREE.Vector2( 10.0, 10.0 ) },
  69. 'u_resolution': { value: 512.0 },
  70. 'u_size': { value: 250.0 }
  71. },
  72. vertexShader: [
  73. 'void main (void) {',
  74. ' gl_Position = vec4(position, 1.0);',
  75. '}'
  76. ].join( '\n' ),
  77. fragmentShader: [
  78. 'precision highp float;',
  79. '#include <common>',
  80. 'const float G = 9.81;',
  81. 'const float KM = 370.0;',
  82. 'const float CM = 0.23;',
  83. 'uniform vec2 u_wind;',
  84. 'uniform float u_resolution;',
  85. 'uniform float u_size;',
  86. 'float omega (float k) {',
  87. ' return sqrt(G * k * (1.0 + pow2(k / KM)));',
  88. '}',
  89. '#if __VERSION__ == 100',
  90. 'float tanh (float x) {',
  91. ' return (1.0 - exp(-2.0 * x)) / (1.0 + exp(-2.0 * x));',
  92. '}',
  93. '#endif',
  94. 'void main (void) {',
  95. ' vec2 coordinates = gl_FragCoord.xy - 0.5;',
  96. ' float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
  97. ' float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
  98. ' vec2 K = (2.0 * PI * vec2(n, m)) / u_size;',
  99. ' float k = length(K);',
  100. ' float l_wind = length(u_wind);',
  101. ' float Omega = 0.84;',
  102. ' float kp = G * pow2(Omega / l_wind);',
  103. ' float c = omega(k) / k;',
  104. ' float cp = omega(kp) / kp;',
  105. ' float Lpm = exp(-1.25 * pow2(kp / k));',
  106. ' float gamma = 1.7;',
  107. ' float sigma = 0.08 * (1.0 + 4.0 * pow(Omega, -3.0));',
  108. ' float Gamma = exp(-pow2(sqrt(k / kp) - 1.0) / 2.0 * pow2(sigma));',
  109. ' float Jp = pow(gamma, Gamma);',
  110. ' float Fp = Lpm * Jp * exp(-Omega / sqrt(10.0) * (sqrt(k / kp) - 1.0));',
  111. ' float alphap = 0.006 * sqrt(Omega);',
  112. ' float Bl = 0.5 * alphap * cp / c * Fp;',
  113. ' float z0 = 0.000037 * pow2(l_wind) / G * pow(l_wind / cp, 0.9);',
  114. ' float uStar = 0.41 * l_wind / log(10.0 / z0);',
  115. ' float alpham = 0.01 * ((uStar < CM) ? (1.0 + log(uStar / CM)) : (1.0 + 3.0 * log(uStar / CM)));',
  116. ' float Fm = exp(-0.25 * pow2(k / KM - 1.0));',
  117. ' float Bh = 0.5 * alpham * CM / c * Fm * Lpm;',
  118. ' float a0 = log(2.0) / 4.0;',
  119. ' float am = 0.13 * uStar / CM;',
  120. ' float Delta = tanh(a0 + 4.0 * pow(c / cp, 2.5) + am * pow(CM / c, 2.5));',
  121. ' float cosPhi = dot(normalize(u_wind), normalize(K));',
  122. ' float S = (1.0 / (2.0 * PI)) * pow(k, -4.0) * (Bl + Bh) * (1.0 + Delta * (2.0 * cosPhi * cosPhi - 1.0));',
  123. ' float dk = 2.0 * PI / u_size;',
  124. ' float h = sqrt(S / 2.0) * dk;',
  125. ' if (K.x == 0.0 && K.y == 0.0) {',
  126. ' h = 0.0;', //no DC term
  127. ' }',
  128. ' gl_FragColor = vec4(h, 0.0, 0.0, 0.0);',
  129. '}'
  130. ].join( '\n' )
  131. };
  132. THREE.OceanShaders[ 'ocean_phase' ] = {
  133. uniforms: {
  134. 'u_phases': { value: null },
  135. 'u_deltaTime': { value: null },
  136. 'u_resolution': { value: null },
  137. 'u_size': { value: null }
  138. },
  139. fragmentShader: [
  140. 'precision highp float;',
  141. '#include <common>',
  142. 'const float G = 9.81;',
  143. 'const float KM = 370.0;',
  144. 'varying vec2 vUV;',
  145. 'uniform sampler2D u_phases;',
  146. 'uniform float u_deltaTime;',
  147. 'uniform float u_resolution;',
  148. 'uniform float u_size;',
  149. 'float omega (float k) {',
  150. ' return sqrt(G * k * (1.0 + k * k / KM * KM));',
  151. '}',
  152. 'void main (void) {',
  153. ' float deltaTime = 1.0 / 60.0;',
  154. ' vec2 coordinates = gl_FragCoord.xy - 0.5;',
  155. ' float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
  156. ' float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
  157. ' vec2 waveVector = (2.0 * PI * vec2(n, m)) / u_size;',
  158. ' float phase = texture2D(u_phases, vUV).r;',
  159. ' float deltaPhase = omega(length(waveVector)) * u_deltaTime;',
  160. ' phase = mod(phase + deltaPhase, 2.0 * PI);',
  161. ' gl_FragColor = vec4(phase, 0.0, 0.0, 0.0);',
  162. '}'
  163. ].join( '\n' )
  164. };
  165. THREE.OceanShaders[ 'ocean_spectrum' ] = {
  166. uniforms: {
  167. 'u_size': { value: null },
  168. 'u_resolution': { value: null },
  169. 'u_choppiness': { value: null },
  170. 'u_phases': { value: null },
  171. 'u_initialSpectrum': { value: null }
  172. },
  173. fragmentShader: [
  174. 'precision highp float;',
  175. '#include <common>',
  176. 'const float G = 9.81;',
  177. 'const float KM = 370.0;',
  178. 'varying vec2 vUV;',
  179. 'uniform float u_size;',
  180. 'uniform float u_resolution;',
  181. 'uniform float u_choppiness;',
  182. 'uniform sampler2D u_phases;',
  183. 'uniform sampler2D u_initialSpectrum;',
  184. 'vec2 multiplyComplex (vec2 a, vec2 b) {',
  185. ' return vec2(a[0] * b[0] - a[1] * b[1], a[1] * b[0] + a[0] * b[1]);',
  186. '}',
  187. 'vec2 multiplyByI (vec2 z) {',
  188. ' return vec2(-z[1], z[0]);',
  189. '}',
  190. 'float omega (float k) {',
  191. ' return sqrt(G * k * (1.0 + k * k / KM * KM));',
  192. '}',
  193. 'void main (void) {',
  194. ' vec2 coordinates = gl_FragCoord.xy - 0.5;',
  195. ' float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
  196. ' float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
  197. ' vec2 waveVector = (2.0 * PI * vec2(n, m)) / u_size;',
  198. ' float phase = texture2D(u_phases, vUV).r;',
  199. ' vec2 phaseVector = vec2(cos(phase), sin(phase));',
  200. ' vec2 h0 = texture2D(u_initialSpectrum, vUV).rg;',
  201. ' vec2 h0Star = texture2D(u_initialSpectrum, vec2(1.0 - vUV + 1.0 / u_resolution)).rg;',
  202. ' h0Star.y *= -1.0;',
  203. ' vec2 h = multiplyComplex(h0, phaseVector) + multiplyComplex(h0Star, vec2(phaseVector.x, -phaseVector.y));',
  204. ' vec2 hX = -multiplyByI(h * (waveVector.x / length(waveVector))) * u_choppiness;',
  205. ' vec2 hZ = -multiplyByI(h * (waveVector.y / length(waveVector))) * u_choppiness;',
  206. //no DC term
  207. ' if (waveVector.x == 0.0 && waveVector.y == 0.0) {',
  208. ' h = vec2(0.0);',
  209. ' hX = vec2(0.0);',
  210. ' hZ = vec2(0.0);',
  211. ' }',
  212. ' gl_FragColor = vec4(hX + multiplyByI(h), hZ);',
  213. '}'
  214. ].join( '\n' )
  215. };
  216. THREE.OceanShaders[ 'ocean_normals' ] = {
  217. uniforms: {
  218. 'u_displacementMap': { value: null },
  219. 'u_resolution': { value: null },
  220. 'u_size': { value: null }
  221. },
  222. fragmentShader: [
  223. 'precision highp float;',
  224. 'varying vec2 vUV;',
  225. 'uniform sampler2D u_displacementMap;',
  226. 'uniform float u_resolution;',
  227. 'uniform float u_size;',
  228. 'void main (void) {',
  229. ' float texel = 1.0 / u_resolution;',
  230. ' float texelSize = u_size / u_resolution;',
  231. ' vec3 center = texture2D(u_displacementMap, vUV).rgb;',
  232. ' vec3 right = vec3(texelSize, 0.0, 0.0) + texture2D(u_displacementMap, vUV + vec2(texel, 0.0)).rgb - center;',
  233. ' vec3 left = vec3(-texelSize, 0.0, 0.0) + texture2D(u_displacementMap, vUV + vec2(-texel, 0.0)).rgb - center;',
  234. ' vec3 top = vec3(0.0, 0.0, -texelSize) + texture2D(u_displacementMap, vUV + vec2(0.0, -texel)).rgb - center;',
  235. ' vec3 bottom = vec3(0.0, 0.0, texelSize) + texture2D(u_displacementMap, vUV + vec2(0.0, texel)).rgb - center;',
  236. ' vec3 topRight = cross(right, top);',
  237. ' vec3 topLeft = cross(top, left);',
  238. ' vec3 bottomLeft = cross(left, bottom);',
  239. ' vec3 bottomRight = cross(bottom, right);',
  240. ' gl_FragColor = vec4(normalize(topRight + topLeft + bottomLeft + bottomRight), 1.0);',
  241. '}'
  242. ].join( '\n' )
  243. };
  244. THREE.OceanShaders[ 'ocean_main' ] = {
  245. uniforms: {
  246. 'u_displacementMap': { value: null },
  247. 'u_normalMap': { value: null },
  248. 'u_geometrySize': { value: null },
  249. 'u_size': { value: null },
  250. 'u_projectionMatrix': { value: null },
  251. 'u_viewMatrix': { value: null },
  252. 'u_cameraPosition': { value: null },
  253. 'u_skyColor': { value: null },
  254. 'u_oceanColor': { value: null },
  255. 'u_sunDirection': { value: null },
  256. 'u_exposure': { value: null }
  257. },
  258. vertexShader: [
  259. 'precision highp float;',
  260. 'varying vec3 vPos;',
  261. 'varying vec2 vUV;',
  262. 'uniform mat4 u_projectionMatrix;',
  263. 'uniform mat4 u_viewMatrix;',
  264. 'uniform float u_size;',
  265. 'uniform float u_geometrySize;',
  266. 'uniform sampler2D u_displacementMap;',
  267. 'void main (void) {',
  268. ' vec3 newPos = position + texture2D(u_displacementMap, uv).rgb * (u_geometrySize / u_size);',
  269. ' vPos = newPos;',
  270. ' vUV = uv;',
  271. ' gl_Position = u_projectionMatrix * u_viewMatrix * vec4(newPos, 1.0);',
  272. '}'
  273. ].join( '\n' ),
  274. fragmentShader: [
  275. 'precision highp float;',
  276. 'varying vec3 vPos;',
  277. 'varying vec2 vUV;',
  278. 'uniform sampler2D u_displacementMap;',
  279. 'uniform sampler2D u_normalMap;',
  280. 'uniform vec3 u_cameraPosition;',
  281. 'uniform vec3 u_oceanColor;',
  282. 'uniform vec3 u_skyColor;',
  283. 'uniform vec3 u_sunDirection;',
  284. 'uniform float u_exposure;',
  285. 'vec3 hdr (vec3 color, float exposure) {',
  286. ' return 1.0 - exp(-color * exposure);',
  287. '}',
  288. 'void main (void) {',
  289. ' vec3 normal = texture2D(u_normalMap, vUV).rgb;',
  290. ' vec3 view = normalize(u_cameraPosition - vPos);',
  291. ' float fresnel = 0.02 + 0.98 * pow(1.0 - dot(normal, view), 5.0);',
  292. ' vec3 sky = fresnel * u_skyColor;',
  293. ' float diffuse = clamp(dot(normal, normalize(u_sunDirection)), 0.0, 1.0);',
  294. ' vec3 water = (1.0 - fresnel) * u_oceanColor * u_skyColor * diffuse;',
  295. ' vec3 color = sky + water;',
  296. ' gl_FragColor = vec4(hdr(color, u_exposure), 1.0);',
  297. '}'
  298. ].join( '\n' )
  299. };