CurveExtras.js 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. /*
  2. * A bunch of curves
  3. * @author zz85
  4. */
  5. // Lets define some curves
  6. THREE.Curves = {};
  7. // Formula from http://mathworld.wolfram.com/HeartCurve.html
  8. THREE.Curves.HeartCurve = THREE.Curve.create(
  9. function(s) {
  10. this.scale = (s === undefined) ? 5 : s;
  11. },
  12. function(t) {
  13. t *= 2 * Math.PI;
  14. var tx = 16 * Math.pow(Math.sin(t), 3);
  15. ty = 13 * Math.cos(t) - 5 * Math.cos(2 * t) - 2 * Math.cos(3 * t) - Math.cos(4 * t), tz = 0;
  16. return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
  17. }
  18. );
  19. // Viviani's Curve
  20. // http://en.wikipedia.org/wiki/Viviani%27s_curve
  21. THREE.Curves.VivianiCurve = THREE.Curve.create(
  22. function(radius) {
  23. this.radius = radius;
  24. },
  25. function(t) {
  26. t = t * 4 * Math.PI; // Normalized to 0..1
  27. var a = this.radius / 2;
  28. var tx = a * (1 + Math.cos(t)),
  29. ty = a * Math.sin(t),
  30. tz = 2 * a * Math.sin(t / 2);
  31. return new THREE.Vector3(tx, ty, tz);
  32. }
  33. );
  34. THREE.Curves.KnotCurve = THREE.Curve.create(
  35. function() {
  36. },
  37. function(t) {
  38. t *= 2 * Math.PI;
  39. var R = 10;
  40. var s = 50;
  41. var tx = s * Math.sin(t),
  42. ty = Math.cos(t) * (R + s * Math.cos(t)),
  43. tz = Math.sin(t) * (R + s * Math.cos(t));
  44. return new THREE.Vector3(tx, ty, tz);
  45. }
  46. );
  47. THREE.Curves.HelixCurve = THREE.Curve.create(
  48. function() {
  49. },
  50. function(t) {
  51. var a = 30; // radius
  52. var b = 150; //height
  53. var t2 = 2 * Math.PI * t * b / 30;
  54. var tx = Math.cos(t2) * a,
  55. ty = Math.sin(t2) * a,
  56. tz = b * t;
  57. return new THREE.Vector3(tx, ty, tz);
  58. }
  59. );
  60. // Replacement for TorusKnotGeometry?
  61. THREE.Curves.TrefoilKnot = THREE.Curve.create(
  62. function(s) {
  63. this.scale = (s === undefined) ? 10 : s;
  64. },
  65. function(t) {
  66. t *= Math.PI * 2;
  67. var tx = (2 + Math.cos(3 * t)) * Math.cos(2 * t),
  68. ty = (2 + Math.cos(3 * t)) * Math.sin(2 * t),
  69. tz = Math.sin(3 * t);
  70. return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
  71. }
  72. );
  73. // Formulas from http://mathdl.maa.org/images/upload_library/23/stemkoski/knots/page6.html
  74. THREE.Curves.TorusKnot = THREE.Curve.create(
  75. function(s) {
  76. this.scale = (s === undefined) ? 10 : s;
  77. },
  78. function(t) {
  79. var p = 3,
  80. q = 4;
  81. t *= Math.PI * 2;
  82. var tx = (2 + Math.cos(q * t)) * Math.cos(p * t),
  83. ty = (2 + Math.cos(q * t)) * Math.sin(p * t),
  84. tz = Math.sin(q * t);
  85. return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
  86. }
  87. );
  88. THREE.Curves.CinquefoilKnot = THREE.Curve.create(
  89. function(s) {
  90. this.scale = (s === undefined) ? 10 : s;
  91. },
  92. function(t) {
  93. var p = 2,
  94. q = 5;
  95. t *= Math.PI * 2;
  96. var tx = (2 + Math.cos(q * t)) * Math.cos(p * t),
  97. ty = (2 + Math.cos(q * t)) * Math.sin(p * t),
  98. tz = Math.sin(q * t);
  99. return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
  100. }
  101. );
  102. THREE.Curves.TrefoilPolynomialKnot = THREE.Curve.create(
  103. function(s) {
  104. this.scale = (s === undefined) ? 10 : s;
  105. },
  106. function(t) {
  107. t = t * 4 - 2;
  108. var tx = Math.pow(t, 3) - 3 * t,
  109. ty = Math.pow(t, 4) - 4 * t * t,
  110. tz = 1 / 5 * Math.pow(t, 5) - 2 * t;
  111. return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
  112. }
  113. );
  114. var sin = Math.sin,
  115. pow = Math.pow,
  116. cos = Math.cos;
  117. // var scaleTo = function(x, y) {
  118. // var r = y - x;
  119. // return function(t) {
  120. // t * r + x;
  121. // };
  122. // }
  123. var scaleTo = function(x, y, t) {
  124. var r = y - x;
  125. return t * r + x;
  126. }
  127. THREE.Curves.FigureEightPolynomialKnot = THREE.Curve.create(
  128. function(s) {
  129. this.scale = (s === undefined) ? 1 : s;
  130. },
  131. function(t) {
  132. t = scaleTo(-4, 4, t);
  133. var tx = 2 / 5 * t * (t * t - 7) * (t * t - 10),
  134. ty = pow(t, 4) - 13 * t * t,
  135. tz = 1 / 10 * t * (t * t - 4) * (t * t - 9) * (t * t - 12);
  136. return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
  137. }
  138. );
  139. // When there's time, try more formulas at http://mathdl.maa.org/images/upload_library/23/stemkoski/knots/page4.html
  140. //http://www.mi.sanu.ac.rs/vismath/taylorapril2011/Taylor.pdf
  141. THREE.Curves.DecoratedTorusKnot4a = THREE.Curve.create(
  142. function(s) {
  143. this.scale = (s === undefined) ? 40 : s;
  144. },
  145. function(t) {
  146. t *= Math.PI * 2;
  147. var
  148. x = cos(2 * t) * (1 + 0.6 * (cos(5 * t) + 0.75 * cos(10 * t))),
  149. y = sin(2 * t) * (1 + 0.6 * (cos(5 * t) + 0.75 * cos(10 * t))),
  150. z = 0.35 * sin(5 * t);
  151. return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
  152. }
  153. );
  154. THREE.Curves.DecoratedTorusKnot4b = THREE.Curve.create(
  155. function(s) {
  156. this.scale = (s === undefined) ? 40 : s;
  157. },
  158. function(t) {
  159. var fi = t * Math.PI * 2;
  160. var x = cos(2 * fi) * (1 + 0.45 * cos(3 * fi) + 0.4 * cos(9 * fi)),
  161. y = sin(2 * fi) * (1 + 0.45 * cos(3 * fi) + 0.4 * cos(9 * fi)),
  162. z = 0.2 * sin(9 * fi);
  163. return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
  164. }
  165. );
  166. THREE.Curves.DecoratedTorusKnot5a = THREE.Curve.create(
  167. function(s) {
  168. this.scale = (s === undefined) ? 40 : s;
  169. },
  170. function(t) {
  171. var fi = t * Math.PI * 2;
  172. var x = cos(3 * fi) * (1 + 0.3 * cos(5 * fi) + 0.5 * cos(10 * fi)),
  173. y = sin(3 * fi) * (1 + 0.3 * cos(5 * fi) + 0.5 * cos(10 * fi)),
  174. z = 0.2 * sin(20 * fi);
  175. return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
  176. }
  177. );
  178. THREE.Curves.DecoratedTorusKnot5c = THREE.Curve.create(
  179. function(s) {
  180. this.scale = (s === undefined) ? 40 : s;
  181. },
  182. function(t) {
  183. var fi = t * Math.PI * 2;
  184. var x = cos(4 * fi) * (1 + 0.5 * (cos(5 * fi) + 0.4 * cos(20 * fi))),
  185. y = sin(4 * fi) * (1 + 0.5 * (cos(5 * fi) + 0.4 * cos(20 * fi))),
  186. z = 0.35 * sin(15 * fi);
  187. return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
  188. }
  189. );