EXRLoader.js 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. * @author ScieCode / http://github.com/sciecode
  4. *
  5. * OpenEXR loader which, currently, supports uncompressed, ZIP(S), RLE and PIZ wavelet compression.
  6. * Supports reading 16 and 32 bit data format.
  7. *
  8. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  9. * implementation, so I have preserved their copyright notices.
  10. */
  11. // /*
  12. // Copyright (c) 2014 - 2017, Syoyo Fujita
  13. // All rights reserved.
  14. // Redistribution and use in source and binary forms, with or without
  15. // modification, are permitted provided that the following conditions are met:
  16. // * Redistributions of source code must retain the above copyright
  17. // notice, this list of conditions and the following disclaimer.
  18. // * Redistributions in binary form must reproduce the above copyright
  19. // notice, this list of conditions and the following disclaimer in the
  20. // documentation and/or other materials provided with the distribution.
  21. // * Neither the name of the Syoyo Fujita nor the
  22. // names of its contributors may be used to endorse or promote products
  23. // derived from this software without specific prior written permission.
  24. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  25. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  26. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  27. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  28. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  29. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  30. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  31. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  32. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  33. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  34. // */
  35. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  36. // ///////////////////////////////////////////////////////////////////////////
  37. // //
  38. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  39. // // Digital Ltd. LLC
  40. // //
  41. // // All rights reserved.
  42. // //
  43. // // Redistribution and use in source and binary forms, with or without
  44. // // modification, are permitted provided that the following conditions are
  45. // // met:
  46. // // * Redistributions of source code must retain the above copyright
  47. // // notice, this list of conditions and the following disclaimer.
  48. // // * Redistributions in binary form must reproduce the above
  49. // // copyright notice, this list of conditions and the following disclaimer
  50. // // in the documentation and/or other materials provided with the
  51. // // distribution.
  52. // // * Neither the name of Industrial Light & Magic nor the names of
  53. // // its contributors may be used to endorse or promote products derived
  54. // // from this software without specific prior written permission.
  55. // //
  56. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  57. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  58. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  59. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  60. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  61. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  62. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  63. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  64. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  65. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  66. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  67. // //
  68. // ///////////////////////////////////////////////////////////////////////////
  69. // // End of OpenEXR license -------------------------------------------------
  70. THREE.EXRLoader = function ( manager ) {
  71. THREE.DataTextureLoader.call( this, manager );
  72. this.type = THREE.FloatType;
  73. };
  74. THREE.EXRLoader.prototype = Object.assign( Object.create( THREE.DataTextureLoader.prototype ), {
  75. constructor: THREE.EXRLoader,
  76. parse: function ( buffer ) {
  77. const USHORT_RANGE = ( 1 << 16 );
  78. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  79. const HUF_ENCBITS = 16; // literal (value) bit length
  80. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  81. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  82. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  83. const HUF_DECMASK = HUF_DECSIZE - 1;
  84. const SHORT_ZEROCODE_RUN = 59;
  85. const LONG_ZEROCODE_RUN = 63;
  86. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  87. const ULONG_SIZE = 8;
  88. const FLOAT32_SIZE = 4;
  89. const INT32_SIZE = 4;
  90. const INT16_SIZE = 2;
  91. const INT8_SIZE = 1;
  92. const STATIC_HUFFMAN = 0;
  93. const DEFLATE = 1;
  94. const UNKNOWN = 0;
  95. const LOSSY_DCT = 1;
  96. const RLE = 2;
  97. const logBase = Math.pow( 2.7182818, 2.2 );
  98. function reverseLutFromBitmap( bitmap, lut ) {
  99. var k = 0;
  100. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  101. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  102. lut[ k ++ ] = i;
  103. }
  104. }
  105. var n = k - 1;
  106. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  107. return n;
  108. }
  109. function hufClearDecTable( hdec ) {
  110. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  111. hdec[ i ] = {};
  112. hdec[ i ].len = 0;
  113. hdec[ i ].lit = 0;
  114. hdec[ i ].p = null;
  115. }
  116. }
  117. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  118. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  119. while ( lc < nBits ) {
  120. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  121. lc += 8;
  122. }
  123. lc -= nBits;
  124. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  125. getBitsReturn.c = c;
  126. getBitsReturn.lc = lc;
  127. }
  128. const hufTableBuffer = new Array( 59 );
  129. function hufCanonicalCodeTable( hcode ) {
  130. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  131. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  132. var c = 0;
  133. for ( var i = 58; i > 0; -- i ) {
  134. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  135. hufTableBuffer[ i ] = c;
  136. c = nc;
  137. }
  138. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  139. var l = hcode[ i ];
  140. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  141. }
  142. }
  143. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  144. var p = inOffset;
  145. var c = 0;
  146. var lc = 0;
  147. for ( ; im <= iM; im ++ ) {
  148. if ( p.value - inOffset.value > ni ) return false;
  149. getBits( 6, c, lc, uInt8Array, p );
  150. var l = getBitsReturn.l;
  151. c = getBitsReturn.c;
  152. lc = getBitsReturn.lc;
  153. hcode[ im ] = l;
  154. if ( l == LONG_ZEROCODE_RUN ) {
  155. if ( p.value - inOffset.value > ni ) {
  156. throw 'Something wrong with hufUnpackEncTable';
  157. }
  158. getBits( 8, c, lc, uInt8Array, p );
  159. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  160. c = getBitsReturn.c;
  161. lc = getBitsReturn.lc;
  162. if ( im + zerun > iM + 1 ) {
  163. throw 'Something wrong with hufUnpackEncTable';
  164. }
  165. while ( zerun -- ) hcode[ im ++ ] = 0;
  166. im --;
  167. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  168. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  169. if ( im + zerun > iM + 1 ) {
  170. throw 'Something wrong with hufUnpackEncTable';
  171. }
  172. while ( zerun -- ) hcode[ im ++ ] = 0;
  173. im --;
  174. }
  175. }
  176. hufCanonicalCodeTable( hcode );
  177. }
  178. function hufLength( code ) {
  179. return code & 63;
  180. }
  181. function hufCode( code ) {
  182. return code >> 6;
  183. }
  184. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  185. for ( ; im <= iM; im ++ ) {
  186. var c = hufCode( hcode[ im ] );
  187. var l = hufLength( hcode[ im ] );
  188. if ( c >> l ) {
  189. throw 'Invalid table entry';
  190. }
  191. if ( l > HUF_DECBITS ) {
  192. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  193. if ( pl.len ) {
  194. throw 'Invalid table entry';
  195. }
  196. pl.lit ++;
  197. if ( pl.p ) {
  198. var p = pl.p;
  199. pl.p = new Array( pl.lit );
  200. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  201. pl.p[ i ] = p[ i ];
  202. }
  203. } else {
  204. pl.p = new Array( 1 );
  205. }
  206. pl.p[ pl.lit - 1 ] = im;
  207. } else if ( l ) {
  208. var plOffset = 0;
  209. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  210. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  211. if ( pl.len || pl.p ) {
  212. throw 'Invalid table entry';
  213. }
  214. pl.len = l;
  215. pl.lit = im;
  216. plOffset ++;
  217. }
  218. }
  219. }
  220. return true;
  221. }
  222. const getCharReturn = { c: 0, lc: 0 };
  223. function getChar( c, lc, uInt8Array, inOffset ) {
  224. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  225. lc += 8;
  226. getCharReturn.c = c;
  227. getCharReturn.lc = lc;
  228. }
  229. const getCodeReturn = { c: 0, lc: 0 };
  230. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  231. if ( po == rlc ) {
  232. if ( lc < 8 ) {
  233. getChar( c, lc, uInt8Array, inOffset );
  234. c = getCharReturn.c;
  235. lc = getCharReturn.lc;
  236. }
  237. lc -= 8;
  238. var cs = ( c >> lc );
  239. var cs = new Uint8Array( [ cs ] )[ 0 ];
  240. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  241. return false;
  242. }
  243. var s = outBuffer[ outBufferOffset.value - 1 ];
  244. while ( cs -- > 0 ) {
  245. outBuffer[ outBufferOffset.value ++ ] = s;
  246. }
  247. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  248. outBuffer[ outBufferOffset.value ++ ] = po;
  249. } else {
  250. return false;
  251. }
  252. getCodeReturn.c = c;
  253. getCodeReturn.lc = lc;
  254. }
  255. function UInt16( value ) {
  256. return ( value & 0xFFFF );
  257. }
  258. function Int16( value ) {
  259. var ref = UInt16( value );
  260. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  261. }
  262. const wdec14Return = { a: 0, b: 0 };
  263. function wdec14( l, h ) {
  264. var ls = Int16( l );
  265. var hs = Int16( h );
  266. var hi = hs;
  267. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  268. var as = ai;
  269. var bs = ai - hi;
  270. wdec14Return.a = as;
  271. wdec14Return.b = bs;
  272. }
  273. function wav2Decode( buffer, j, nx, ox, ny, oy ) {
  274. var n = ( nx > ny ) ? ny : nx;
  275. var p = 1;
  276. var p2;
  277. while ( p <= n ) p <<= 1;
  278. p >>= 1;
  279. p2 = p;
  280. p >>= 1;
  281. while ( p >= 1 ) {
  282. var py = 0;
  283. var ey = py + oy * ( ny - p2 );
  284. var oy1 = oy * p;
  285. var oy2 = oy * p2;
  286. var ox1 = ox * p;
  287. var ox2 = ox * p2;
  288. var i00, i01, i10, i11;
  289. for ( ; py <= ey; py += oy2 ) {
  290. var px = py;
  291. var ex = py + ox * ( nx - p2 );
  292. for ( ; px <= ex; px += ox2 ) {
  293. var p01 = px + ox1;
  294. var p10 = px + oy1;
  295. var p11 = p10 + ox1;
  296. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  297. i00 = wdec14Return.a;
  298. i10 = wdec14Return.b;
  299. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  300. i01 = wdec14Return.a;
  301. i11 = wdec14Return.b;
  302. wdec14( i00, i01 );
  303. buffer[ px + j ] = wdec14Return.a;
  304. buffer[ p01 + j ] = wdec14Return.b;
  305. wdec14( i10, i11 );
  306. buffer[ p10 + j ] = wdec14Return.a;
  307. buffer[ p11 + j ] = wdec14Return.b;
  308. }
  309. if ( nx & p ) {
  310. var p10 = px + oy1;
  311. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  312. i00 = wdec14Return.a;
  313. buffer[ p10 + j ] = wdec14Return.b;
  314. buffer[ px + j ] = i00;
  315. }
  316. }
  317. if ( ny & p ) {
  318. var px = py;
  319. var ex = py + ox * ( nx - p2 );
  320. for ( ; px <= ex; px += ox2 ) {
  321. var p01 = px + ox1;
  322. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  323. i00 = wdec14Return.a;
  324. buffer[ p01 + j ] = wdec14Return.b;
  325. buffer[ px + j ] = i00;
  326. }
  327. }
  328. p2 = p;
  329. p >>= 1;
  330. }
  331. return py;
  332. }
  333. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  334. var c = 0;
  335. var lc = 0;
  336. var outBufferEndOffset = no;
  337. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  338. while ( inOffset.value < inOffsetEnd ) {
  339. getChar( c, lc, uInt8Array, inOffset );
  340. c = getCharReturn.c;
  341. lc = getCharReturn.lc;
  342. while ( lc >= HUF_DECBITS ) {
  343. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  344. var pl = decodingTable[ index ];
  345. if ( pl.len ) {
  346. lc -= pl.len;
  347. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  348. c = getCodeReturn.c;
  349. lc = getCodeReturn.lc;
  350. } else {
  351. if ( ! pl.p ) {
  352. throw 'hufDecode issues';
  353. }
  354. var j;
  355. for ( j = 0; j < pl.lit; j ++ ) {
  356. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  357. while ( lc < l && inOffset.value < inOffsetEnd ) {
  358. getChar( c, lc, uInt8Array, inOffset );
  359. c = getCharReturn.c;
  360. lc = getCharReturn.lc;
  361. }
  362. if ( lc >= l ) {
  363. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  364. lc -= l;
  365. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  366. c = getCodeReturn.c;
  367. lc = getCodeReturn.lc;
  368. break;
  369. }
  370. }
  371. }
  372. if ( j == pl.lit ) {
  373. throw 'hufDecode issues';
  374. }
  375. }
  376. }
  377. }
  378. var i = ( 8 - ni ) & 7;
  379. c >>= i;
  380. lc -= i;
  381. while ( lc > 0 ) {
  382. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  383. if ( pl.len ) {
  384. lc -= pl.len;
  385. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  386. c = getCodeReturn.c;
  387. lc = getCodeReturn.lc;
  388. } else {
  389. throw 'hufDecode issues';
  390. }
  391. }
  392. return true;
  393. }
  394. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  395. var outOffset = { value: 0 };
  396. var initialInOffset = inOffset.value;
  397. var im = parseUint32( inDataView, inOffset );
  398. var iM = parseUint32( inDataView, inOffset );
  399. inOffset.value += 4;
  400. var nBits = parseUint32( inDataView, inOffset );
  401. inOffset.value += 4;
  402. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  403. throw 'Something wrong with HUF_ENCSIZE';
  404. }
  405. var freq = new Array( HUF_ENCSIZE );
  406. var hdec = new Array( HUF_DECSIZE );
  407. hufClearDecTable( hdec );
  408. var ni = nCompressed - ( inOffset.value - initialInOffset );
  409. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  410. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  411. throw 'Something wrong with hufUncompress';
  412. }
  413. hufBuildDecTable( freq, im, iM, hdec );
  414. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  415. }
  416. function applyLut( lut, data, nData ) {
  417. for ( var i = 0; i < nData; ++ i ) {
  418. data[ i ] = lut[ data[ i ] ];
  419. }
  420. }
  421. function predictor( source ) {
  422. for ( var t = 1; t < source.length; t ++ ) {
  423. var d = source[ t - 1 ] + source[ t ] - 128;
  424. source[ t ] = d;
  425. }
  426. }
  427. function interleaveScalar( source, out ) {
  428. var t1 = 0;
  429. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  430. var s = 0;
  431. var stop = source.length - 1;
  432. while ( true ) {
  433. if ( s > stop ) break;
  434. out[ s ++ ] = source[ t1 ++ ];
  435. if ( s > stop ) break;
  436. out[ s ++ ] = source[ t2 ++ ];
  437. }
  438. }
  439. function decodeRunLength( source ) {
  440. var size = source.byteLength;
  441. var out = new Array();
  442. var p = 0;
  443. var reader = new DataView( source );
  444. while ( size > 0 ) {
  445. var l = reader.getInt8( p ++ );
  446. if ( l < 0 ) {
  447. var count = - l;
  448. size -= count + 1;
  449. for ( var i = 0; i < count; i ++ ) {
  450. out.push( reader.getUint8( p ++ ) );
  451. }
  452. } else {
  453. var count = l;
  454. size -= 2;
  455. var value = reader.getUint8( p ++ );
  456. for ( var i = 0; i < count + 1; i ++ ) {
  457. out.push( value );
  458. }
  459. }
  460. }
  461. return out;
  462. }
  463. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  464. var dataView = new DataView( outBuffer.buffer );
  465. var width = channelData[ cscSet.idx[ 0 ] ].width;
  466. var height = channelData[ cscSet.idx[ 0 ] ].height;
  467. var numComp = 3;
  468. var numFullBlocksX = Math.floor( width / 8.0 );
  469. var numBlocksX = Math.ceil( width / 8.0 );
  470. var numBlocksY = Math.ceil( height / 8.0 );
  471. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  472. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  473. var currAcComp = { value: 0 };
  474. var currDcComp = new Array( numComp );
  475. var dctData = new Array( numComp );
  476. var halfZigBlock = new Array( numComp );
  477. var rowBlock = new Array( numComp );
  478. var rowOffsets = new Array( numComp );
  479. for ( let comp = 0; comp < numComp; ++ comp ) {
  480. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  481. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  482. dctData[ comp ] = new Float32Array( 64 );
  483. halfZigBlock[ comp ] = new Uint16Array( 64 );
  484. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  485. }
  486. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  487. var maxY = 8;
  488. if ( blocky == numBlocksY - 1 )
  489. maxY = leftoverY;
  490. var maxX = 8;
  491. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  492. if ( blockx == numBlocksX - 1 )
  493. maxX = leftoverX;
  494. for ( let comp = 0; comp < numComp; ++ comp ) {
  495. halfZigBlock[ comp ].fill( 0 );
  496. // set block DC component
  497. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
  498. // set block AC components
  499. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  500. // UnZigZag block to float
  501. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  502. // decode float dct
  503. dctInverse( dctData[ comp ] );
  504. }
  505. if ( numComp == 3 ) {
  506. csc709Inverse( dctData );
  507. }
  508. for ( let comp = 0; comp < numComp; ++ comp ) {
  509. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  510. }
  511. } // blockx
  512. let offset = 0;
  513. for ( let comp = 0; comp < numComp; ++ comp ) {
  514. let type = channelData[ cscSet.idx[ comp ] ].type;
  515. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  516. offset = rowOffsets[ comp ][ y ];
  517. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  518. let src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  519. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  520. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  521. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  522. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  523. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  524. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  525. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  526. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  527. offset += 8 * INT16_SIZE * type;
  528. }
  529. }
  530. // handle partial X blocks
  531. if ( numFullBlocksX != numBlocksX ) {
  532. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  533. let offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  534. let src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  535. for ( let x = 0; x < maxX; ++ x ) {
  536. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  537. }
  538. }
  539. }
  540. } // comp
  541. } // blocky
  542. var halfRow = new Uint16Array( width );
  543. var dataView = new DataView( outBuffer.buffer );
  544. // convert channels back to float, if needed
  545. for ( var comp = 0; comp < numComp; ++ comp ) {
  546. channelData[ cscSet.idx[ comp ] ].decoded = true;
  547. var type = channelData[ cscSet.idx[ comp ] ].type;
  548. if ( channelData[ comp ].type != 2 ) continue;
  549. for ( var y = 0; y < height; ++ y ) {
  550. let offset = rowOffsets[ comp ][ y ];
  551. for ( var x = 0; x < width; ++ x ) {
  552. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  553. }
  554. for ( var x = 0; x < width; ++ x ) {
  555. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  556. }
  557. }
  558. }
  559. }
  560. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  561. var acValue;
  562. var dctComp = 1;
  563. while ( dctComp < 64 ) {
  564. acValue = acBuffer[ currAcComp.value ];
  565. if ( acValue == 0xff00 ) {
  566. dctComp = 64;
  567. } else if ( acValue >> 8 == 0xff ) {
  568. dctComp += acValue & 0xff;
  569. } else {
  570. halfZigBlock[ dctComp ] = acValue;
  571. dctComp ++;
  572. }
  573. currAcComp.value ++;
  574. }
  575. }
  576. function unZigZag( src, dst ) {
  577. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  578. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  579. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  580. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  581. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  582. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  583. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  584. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  585. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  586. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  587. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  588. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  589. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  590. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  591. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  592. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  593. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  594. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  595. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  596. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  597. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  598. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  599. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  600. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  601. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  602. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  603. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  604. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  605. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  606. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  607. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  608. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  609. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  610. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  611. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  612. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  613. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  614. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  615. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  616. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  617. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  618. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  619. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  620. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  621. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  622. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  623. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  624. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  625. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  626. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  627. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  628. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  629. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  630. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  631. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  632. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  633. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  634. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  635. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  636. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  637. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  638. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  639. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  640. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  641. }
  642. function dctInverse( data ) {
  643. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  644. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  645. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  646. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  647. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  648. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  649. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  650. var alpha = new Array( 4 );
  651. var beta = new Array( 4 );
  652. var theta = new Array( 4 );
  653. var gamma = new Array( 4 );
  654. for ( var row = 0; row < 8; ++ row ) {
  655. var rowPtr = row * 8;
  656. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  657. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  658. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  659. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  660. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  661. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  662. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  663. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  664. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  665. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  666. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  667. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  668. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  669. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  670. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  671. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  672. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  673. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  674. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  675. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  676. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  677. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  678. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  679. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  680. }
  681. for ( var column = 0; column < 8; ++ column ) {
  682. alpha[ 0 ] = c * data[ 16 + column ];
  683. alpha[ 1 ] = f * data[ 16 + column ];
  684. alpha[ 2 ] = c * data[ 48 + column ];
  685. alpha[ 3 ] = f * data[ 48 + column ];
  686. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  687. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  688. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  689. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  690. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  691. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  692. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  693. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  694. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  695. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  696. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  697. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  698. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  699. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  700. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  701. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  702. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  703. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  704. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  705. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  706. }
  707. }
  708. function csc709Inverse( data ) {
  709. for ( var i = 0; i < 64; ++ i ) {
  710. var y = data[ 0 ][ i ];
  711. var cb = data[ 1 ][ i ];
  712. var cr = data[ 2 ][ i ];
  713. data[ 0 ][ i ] = y + 1.5747 * cr;
  714. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  715. data[ 2 ][ i ] = y + 1.8556 * cb;
  716. }
  717. }
  718. function convertToHalf( src, dst, idx ) {
  719. for ( var i = 0; i < 64; ++ i ) {
  720. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  721. }
  722. }
  723. function toLinear( float ) {
  724. if ( float <= 1 ) {
  725. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  726. } else {
  727. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  728. }
  729. }
  730. function uncompressRAW( info ) {
  731. return new DataView( info.array.buffer, info.offset.value, info.size );
  732. }
  733. function uncompressRLE( info ) {
  734. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  735. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  736. var tmpBuffer = new Uint8Array( rawBuffer.length );
  737. predictor( rawBuffer ); // revert predictor
  738. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  739. return new DataView( tmpBuffer.buffer );
  740. }
  741. function uncompressZIP( info ) {
  742. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  743. if ( typeof Zlib === 'undefined' ) {
  744. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  745. }
  746. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  747. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  748. var tmpBuffer = new Uint8Array( rawBuffer.length );
  749. predictor( rawBuffer ); // revert predictor
  750. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  751. return new DataView( tmpBuffer.buffer );
  752. }
  753. function uncompressPIZ( info ) {
  754. var inDataView = info.viewer;
  755. var inOffset = { value: info.offset.value };
  756. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  757. var outBuffer = new Uint16Array( tmpBufSize );
  758. var bitmap = new Uint8Array( BITMAP_SIZE );
  759. // Setup channel info
  760. var outBufferEnd = 0;
  761. var pizChannelData = new Array( info.channels );
  762. for ( var i = 0; i < info.channels; i ++ ) {
  763. pizChannelData[ i ] = {};
  764. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  765. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  766. pizChannelData[ i ][ 'nx' ] = info.width;
  767. pizChannelData[ i ][ 'ny' ] = info.lines;
  768. pizChannelData[ i ][ 'size' ] = info.type;
  769. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  770. }
  771. // Read range compression data
  772. var minNonZero = parseUint16( inDataView, inOffset );
  773. var maxNonZero = parseUint16( inDataView, inOffset );
  774. if ( maxNonZero >= BITMAP_SIZE ) {
  775. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  776. }
  777. if ( minNonZero <= maxNonZero ) {
  778. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  779. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  780. }
  781. }
  782. // Reverse LUT
  783. var lut = new Uint16Array( USHORT_RANGE );
  784. reverseLutFromBitmap( bitmap, lut );
  785. var length = parseUint32( inDataView, inOffset );
  786. // Huffman decoding
  787. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  788. // Wavelet decoding
  789. for ( var i = 0; i < info.channels; ++ i ) {
  790. var cd = pizChannelData[ i ];
  791. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  792. wav2Decode(
  793. outBuffer,
  794. cd.start + j,
  795. cd.nx,
  796. cd.size,
  797. cd.ny,
  798. cd.nx * cd.size
  799. );
  800. }
  801. }
  802. // Expand the pixel data to their original range
  803. applyLut( lut, outBuffer, outBufferEnd );
  804. // Rearrange the pixel data into the format expected by the caller.
  805. var tmpOffset = 0;
  806. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  807. for ( var y = 0; y < info.lines; y ++ ) {
  808. for ( var c = 0; c < info.channels; c ++ ) {
  809. var cd = pizChannelData[ c ];
  810. var n = cd.nx * cd.size;
  811. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  812. tmpBuffer.set( cp, tmpOffset );
  813. tmpOffset += n * INT16_SIZE;
  814. cd.end += n;
  815. }
  816. }
  817. return new DataView( tmpBuffer.buffer );
  818. }
  819. function uncompressDWA( info ) {
  820. var inDataView = info.viewer;
  821. var inOffset = { value: info.offset.value };
  822. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  823. // Read compression header information
  824. var dwaHeader = {
  825. version: parseInt64( inDataView, inOffset ),
  826. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  827. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  828. acCompressedSize: parseInt64( inDataView, inOffset ),
  829. dcCompressedSize: parseInt64( inDataView, inOffset ),
  830. rleCompressedSize: parseInt64( inDataView, inOffset ),
  831. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  832. rleRawSize: parseInt64( inDataView, inOffset ),
  833. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  834. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  835. acCompression: parseInt64( inDataView, inOffset )
  836. };
  837. if ( dwaHeader.version < 2 )
  838. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  839. // Read channel ruleset information
  840. var channelRules = new Array();
  841. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  842. while ( ruleSize > 0 ) {
  843. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  844. var value = parseUint8( inDataView, inOffset );
  845. var compression = ( value >> 2 ) & 3;
  846. var csc = ( value >> 4 ) - 1;
  847. var index = new Int8Array( [ csc ] )[ 0 ];
  848. var type = parseUint8( inDataView, inOffset );
  849. channelRules.push( {
  850. name: name,
  851. index: index,
  852. type: type,
  853. compression: compression,
  854. } );
  855. ruleSize -= name.length + 3;
  856. }
  857. // Classify channels
  858. var channels = EXRHeader.channels;
  859. var channelData = new Array( info.channels );
  860. for ( var i = 0; i < info.channels; ++ i ) {
  861. var cd = channelData[ i ] = {};
  862. var channel = channels[ i ];
  863. cd.name = channel.name;
  864. cd.compression = UNKNOWN;
  865. cd.decoded = false;
  866. cd.type = channel.pixelType;
  867. cd.pLinear = channel.pLinear;
  868. cd.width = info.width;
  869. cd.height = info.lines;
  870. }
  871. var cscSet = {
  872. idx: new Array( 3 )
  873. };
  874. for ( var offset = 0; offset < info.channels; ++ offset ) {
  875. var cd = channelData[ offset ];
  876. for ( var i = 0; i < channelRules.length; ++ i ) {
  877. var rule = channelRules[ i ];
  878. if ( cd.name == rule.name ) {
  879. cd.compression = rule.compression;
  880. if ( rule.index >= 0 ) {
  881. cscSet.idx[ rule.index ] = offset;
  882. }
  883. cd.offset = offset;
  884. }
  885. }
  886. }
  887. // Read DCT - AC component data
  888. if ( dwaHeader.acCompressedSize > 0 ) {
  889. switch ( dwaHeader.acCompression ) {
  890. case STATIC_HUFFMAN:
  891. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  892. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  893. break;
  894. case DEFLATE:
  895. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  896. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  897. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  898. inOffset.value += dwaHeader.totalAcUncompressedCount;
  899. break;
  900. }
  901. }
  902. // Read DCT - DC component data
  903. if ( dwaHeader.dcCompressedSize > 0 ) {
  904. var zlibInfo = {
  905. array: info.array,
  906. offset: inOffset,
  907. size: dwaHeader.dcCompressedSize
  908. };
  909. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  910. inOffset.value += dwaHeader.dcCompressedSize;
  911. }
  912. // Read RLE compressed data
  913. if ( dwaHeader.rleRawSize > 0 ) {
  914. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  915. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  916. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  917. inOffset.value += dwaHeader.rleCompressedSize;
  918. }
  919. // Prepare outbuffer data offset
  920. var outBufferEnd = 0;
  921. var rowOffsets = new Array( channelData.length );
  922. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  923. rowOffsets[ i ] = new Array();
  924. }
  925. for ( var y = 0; y < info.lines; ++ y ) {
  926. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  927. rowOffsets[ chan ].push( outBufferEnd );
  928. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  929. }
  930. }
  931. // Lossy DCT decode RGB channels
  932. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  933. // Decode other channels
  934. for ( var i = 0; i < channelData.length; ++ i ) {
  935. var cd = channelData[ i ];
  936. if ( cd.decoded ) continue;
  937. switch ( cd.compression ) {
  938. case RLE:
  939. var row = 0;
  940. var rleOffset = 0;
  941. for ( var y = 0; y < info.lines; ++ y ) {
  942. var rowOffsetBytes = rowOffsets[ i ][ row ];
  943. for ( var x = 0; x < cd.width; ++ x ) {
  944. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  945. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  946. }
  947. rleOffset ++;
  948. }
  949. row ++;
  950. }
  951. break;
  952. case LOSSY_DCT: // skip
  953. default:
  954. throw 'EXRLoader.parse: unsupported channel compression';
  955. }
  956. }
  957. return new DataView( outBuffer.buffer );
  958. }
  959. function parseNullTerminatedString( buffer, offset ) {
  960. var uintBuffer = new Uint8Array( buffer );
  961. var endOffset = 0;
  962. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  963. endOffset += 1;
  964. }
  965. var stringValue = new TextDecoder().decode(
  966. uintBuffer.slice( offset.value, offset.value + endOffset )
  967. );
  968. offset.value = offset.value + endOffset + 1;
  969. return stringValue;
  970. }
  971. function parseFixedLengthString( buffer, offset, size ) {
  972. var stringValue = new TextDecoder().decode(
  973. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  974. );
  975. offset.value = offset.value + size;
  976. return stringValue;
  977. }
  978. function parseUlong( dataView, offset ) {
  979. var uLong = dataView.getUint32( 0, true );
  980. offset.value = offset.value + ULONG_SIZE;
  981. return uLong;
  982. }
  983. function parseUint32( dataView, offset ) {
  984. var Uint32 = dataView.getUint32( offset.value, true );
  985. offset.value = offset.value + INT32_SIZE;
  986. return Uint32;
  987. }
  988. function parseUint8Array( uInt8Array, offset ) {
  989. var Uint8 = uInt8Array[ offset.value ];
  990. offset.value = offset.value + INT8_SIZE;
  991. return Uint8;
  992. }
  993. function parseUint8( dataView, offset ) {
  994. var Uint8 = dataView.getUint8( offset.value );
  995. offset.value = offset.value + INT8_SIZE;
  996. return Uint8;
  997. }
  998. function parseInt64( dataView, offset ) {
  999. var int = Number( dataView.getBigInt64( offset.value, true ) );
  1000. offset.value += ULONG_SIZE;
  1001. return int;
  1002. }
  1003. function parseFloat32( dataView, offset ) {
  1004. var float = dataView.getFloat32( offset.value, true );
  1005. offset.value += FLOAT32_SIZE;
  1006. return float;
  1007. }
  1008. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1009. function decodeFloat16( binary ) {
  1010. var exponent = ( binary & 0x7C00 ) >> 10,
  1011. fraction = binary & 0x03FF;
  1012. return ( binary >> 15 ? - 1 : 1 ) * (
  1013. exponent ?
  1014. (
  1015. exponent === 0x1F ?
  1016. fraction ? NaN : Infinity :
  1017. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1018. ) :
  1019. 6.103515625e-5 * ( fraction / 0x400 )
  1020. );
  1021. }
  1022. var encodeFloat16 = ( function () {
  1023. // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
  1024. var floatView = new Float32Array( 1 );
  1025. var int32View = new Int32Array( floatView.buffer );
  1026. /* This method is faster than the OpenEXR implementation (very often
  1027. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  1028. * by James Tursa?s half-precision code. */
  1029. return function toHalf( val ) {
  1030. floatView[ 0 ] = val;
  1031. var x = int32View[ 0 ];
  1032. var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
  1033. var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
  1034. var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
  1035. /* If zero, or denormal, or exponent underflows too much for a denormal
  1036. * half, return signed zero. */
  1037. if ( e < 103 ) return bits;
  1038. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  1039. if ( e > 142 ) {
  1040. bits |= 0x7c00;
  1041. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  1042. * not Inf, so make sure we set one mantissa bit too. */
  1043. bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
  1044. return bits;
  1045. }
  1046. /* If exponent underflows but not too much, return a denormal */
  1047. if ( e < 113 ) {
  1048. m |= 0x0800;
  1049. /* Extra rounding may overflow and set mantissa to 0 and exponent
  1050. * to 1, which is OK. */
  1051. bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
  1052. return bits;
  1053. }
  1054. bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
  1055. /* Extra rounding. An overflow will set mantissa to 0 and increment
  1056. * the exponent, which is OK. */
  1057. bits += m & 1;
  1058. return bits;
  1059. };
  1060. } )();
  1061. function parseUint16( dataView, offset ) {
  1062. var Uint16 = dataView.getUint16( offset.value, true );
  1063. offset.value += INT16_SIZE;
  1064. return Uint16;
  1065. }
  1066. function parseFloat16( buffer, offset ) {
  1067. return decodeFloat16( parseUint16( buffer, offset ) );
  1068. }
  1069. function parseChlist( dataView, buffer, offset, size ) {
  1070. var startOffset = offset.value;
  1071. var channels = [];
  1072. while ( offset.value < ( startOffset + size - 1 ) ) {
  1073. var name = parseNullTerminatedString( buffer, offset );
  1074. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  1075. var pLinear = parseUint8( dataView, offset );
  1076. offset.value += 3; // reserved, three chars
  1077. var xSampling = parseUint32( dataView, offset );
  1078. var ySampling = parseUint32( dataView, offset );
  1079. channels.push( {
  1080. name: name,
  1081. pixelType: pixelType,
  1082. pLinear: pLinear,
  1083. xSampling: xSampling,
  1084. ySampling: ySampling
  1085. } );
  1086. }
  1087. offset.value += 1;
  1088. return channels;
  1089. }
  1090. function parseChromaticities( dataView, offset ) {
  1091. var redX = parseFloat32( dataView, offset );
  1092. var redY = parseFloat32( dataView, offset );
  1093. var greenX = parseFloat32( dataView, offset );
  1094. var greenY = parseFloat32( dataView, offset );
  1095. var blueX = parseFloat32( dataView, offset );
  1096. var blueY = parseFloat32( dataView, offset );
  1097. var whiteX = parseFloat32( dataView, offset );
  1098. var whiteY = parseFloat32( dataView, offset );
  1099. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1100. }
  1101. function parseCompression( dataView, offset ) {
  1102. var compressionCodes = [
  1103. 'NO_COMPRESSION',
  1104. 'RLE_COMPRESSION',
  1105. 'ZIPS_COMPRESSION',
  1106. 'ZIP_COMPRESSION',
  1107. 'PIZ_COMPRESSION',
  1108. 'PXR24_COMPRESSION',
  1109. 'B44_COMPRESSION',
  1110. 'B44A_COMPRESSION',
  1111. 'DWAA_COMPRESSION',
  1112. 'DWAB_COMPRESSION'
  1113. ];
  1114. var compression = parseUint8( dataView, offset );
  1115. return compressionCodes[ compression ];
  1116. }
  1117. function parseBox2i( dataView, offset ) {
  1118. var xMin = parseUint32( dataView, offset );
  1119. var yMin = parseUint32( dataView, offset );
  1120. var xMax = parseUint32( dataView, offset );
  1121. var yMax = parseUint32( dataView, offset );
  1122. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1123. }
  1124. function parseLineOrder( dataView, offset ) {
  1125. var lineOrders = [
  1126. 'INCREASING_Y'
  1127. ];
  1128. var lineOrder = parseUint8( dataView, offset );
  1129. return lineOrders[ lineOrder ];
  1130. }
  1131. function parseV2f( dataView, offset ) {
  1132. var x = parseFloat32( dataView, offset );
  1133. var y = parseFloat32( dataView, offset );
  1134. return [ x, y ];
  1135. }
  1136. function parseValue( dataView, buffer, offset, type, size ) {
  1137. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1138. return parseFixedLengthString( buffer, offset, size );
  1139. } else if ( type === 'chlist' ) {
  1140. return parseChlist( dataView, buffer, offset, size );
  1141. } else if ( type === 'chromaticities' ) {
  1142. return parseChromaticities( dataView, offset );
  1143. } else if ( type === 'compression' ) {
  1144. return parseCompression( dataView, offset );
  1145. } else if ( type === 'box2i' ) {
  1146. return parseBox2i( dataView, offset );
  1147. } else if ( type === 'lineOrder' ) {
  1148. return parseLineOrder( dataView, offset );
  1149. } else if ( type === 'float' ) {
  1150. return parseFloat32( dataView, offset );
  1151. } else if ( type === 'v2f' ) {
  1152. return parseV2f( dataView, offset );
  1153. } else if ( type === 'int' ) {
  1154. return parseUint32( dataView, offset );
  1155. } else {
  1156. throw 'Cannot parse value for unsupported type: ' + type;
  1157. }
  1158. }
  1159. var bufferDataView = new DataView( buffer );
  1160. var uInt8Array = new Uint8Array( buffer );
  1161. var EXRHeader = {};
  1162. bufferDataView.getUint32( 0, true ); // magic
  1163. bufferDataView.getUint8( 4, true ); // versionByteZero
  1164. bufferDataView.getUint8( 5, true ); // fullMask
  1165. // start of header
  1166. var offset = { value: 8 }; // start at 8, after magic stuff
  1167. var keepReading = true;
  1168. while ( keepReading ) {
  1169. var attributeName = parseNullTerminatedString( buffer, offset );
  1170. if ( attributeName == 0 ) {
  1171. keepReading = false;
  1172. } else {
  1173. var attributeType = parseNullTerminatedString( buffer, offset );
  1174. var attributeSize = parseUint32( bufferDataView, offset );
  1175. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1176. EXRHeader[ attributeName ] = attributeValue;
  1177. }
  1178. }
  1179. // offsets
  1180. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1181. var uncompress;
  1182. var scanlineBlockSize;
  1183. switch ( EXRHeader.compression ) {
  1184. case 'NO_COMPRESSION':
  1185. scanlineBlockSize = 1;
  1186. uncompress = uncompressRAW;
  1187. break;
  1188. case 'RLE_COMPRESSION':
  1189. scanlineBlockSize = 1;
  1190. uncompress = uncompressRLE;
  1191. break;
  1192. case 'ZIPS_COMPRESSION':
  1193. scanlineBlockSize = 1;
  1194. uncompress = uncompressZIP;
  1195. break;
  1196. case 'ZIP_COMPRESSION':
  1197. scanlineBlockSize = 16;
  1198. uncompress = uncompressZIP;
  1199. break;
  1200. case 'PIZ_COMPRESSION':
  1201. scanlineBlockSize = 32;
  1202. uncompress = uncompressPIZ;
  1203. break;
  1204. case 'DWAA_COMPRESSION':
  1205. scanlineBlockSize = 32;
  1206. uncompress = uncompressDWA;
  1207. break;
  1208. case 'DWAB_COMPRESSION':
  1209. scanlineBlockSize = 256;
  1210. uncompress = uncompressDWA;
  1211. break;
  1212. default:
  1213. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1214. }
  1215. var size_t;
  1216. var getValue;
  1217. // mixed pixelType not supported
  1218. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1219. if ( pixelType === 1 ) { // half
  1220. switch ( this.type ) {
  1221. case THREE.FloatType:
  1222. getValue = parseFloat16;
  1223. size_t = INT16_SIZE;
  1224. break;
  1225. case THREE.HalfFloatType:
  1226. getValue = parseUint16;
  1227. size_t = INT16_SIZE;
  1228. break;
  1229. }
  1230. } else if ( pixelType === 2 ) { // float
  1231. switch ( this.type ) {
  1232. case THREE.FloatType:
  1233. getValue = parseFloat32;
  1234. size_t = FLOAT32_SIZE;
  1235. break;
  1236. case THREE.HalfFloatType:
  1237. throw 'EXRLoader.parse: unsupported HalfFloatType texture for FloatType image file.';
  1238. }
  1239. } else {
  1240. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1241. }
  1242. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1243. for ( var i = 0; i < numBlocks; i ++ ) {
  1244. parseUlong( bufferDataView, offset ); // scanlineOffset
  1245. }
  1246. // we should be passed the scanline offset table, start reading pixel data
  1247. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1248. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1249. // Firefox only supports RGBA (half) float textures
  1250. // var numChannels = EXRHeader.channels.length;
  1251. var numChannels = 4;
  1252. var size = width * height * numChannels;
  1253. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1254. switch ( this.type ) {
  1255. case THREE.FloatType:
  1256. var byteArray = new Float32Array( size );
  1257. if ( EXRHeader.channels.length < numChannels ) {
  1258. byteArray.fill( 1, 0, size );
  1259. }
  1260. break;
  1261. case THREE.HalfFloatType:
  1262. var byteArray = new Uint16Array( size );
  1263. if ( EXRHeader.channels.length < numChannels ) {
  1264. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1265. }
  1266. break;
  1267. default:
  1268. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1269. break;
  1270. }
  1271. var channelOffsets = {
  1272. R: 0,
  1273. G: 1,
  1274. B: 2,
  1275. A: 3
  1276. };
  1277. var compressionInfo = {
  1278. size: 0,
  1279. width: width,
  1280. lines: scanlineBlockSize,
  1281. offset: offset,
  1282. array: uInt8Array,
  1283. viewer: bufferDataView,
  1284. type: pixelType,
  1285. channels: EXRHeader.channels.length,
  1286. };
  1287. var line;
  1288. var size;
  1289. var viewer;
  1290. var tmpOffset = { value: 0 };
  1291. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1292. line = parseUint32( bufferDataView, offset ); // line_no
  1293. size = parseUint32( bufferDataView, offset ); // data_len
  1294. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1295. compressionInfo.offset = offset;
  1296. compressionInfo.size = size;
  1297. viewer = uncompress( compressionInfo );
  1298. offset.value += size;
  1299. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1300. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1301. if ( true_y >= height ) break;
  1302. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1303. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1304. for ( var x = 0; x < width; x ++ ) {
  1305. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1306. tmpOffset.value = idx * size_t;
  1307. var val = getValue( viewer, tmpOffset );
  1308. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1309. }
  1310. }
  1311. }
  1312. }
  1313. return {
  1314. header: EXRHeader,
  1315. width: width,
  1316. height: height,
  1317. data: byteArray,
  1318. format: numChannels === 4 ? THREE.RGBAFormat : THREE.RGBFormat,
  1319. type: this.type
  1320. };
  1321. },
  1322. setDataType: function ( value ) {
  1323. this.type = value;
  1324. return this;
  1325. },
  1326. load: function ( url, onLoad, onProgress, onError ) {
  1327. function onLoadCallback( texture, texData ) {
  1328. switch ( texture.type ) {
  1329. case THREE.FloatType:
  1330. texture.encoding = THREE.LinearEncoding;
  1331. texture.minFilter = THREE.LinearFilter;
  1332. texture.magFilter = THREE.LinearFilter;
  1333. texture.generateMipmaps = false;
  1334. texture.flipY = false;
  1335. break;
  1336. case THREE.HalfFloatType:
  1337. texture.encoding = THREE.LinearEncoding;
  1338. texture.minFilter = THREE.LinearFilter;
  1339. texture.magFilter = THREE.LinearFilter;
  1340. texture.generateMipmaps = false;
  1341. texture.flipY = false;
  1342. break;
  1343. }
  1344. if ( onLoad ) onLoad( texture, texData );
  1345. }
  1346. return THREE.DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1347. }
  1348. } );