EXRLoader.js 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. * @author ScieCode / http://github.com/sciecode
  4. *
  5. * OpenEXR loader which, currently, supports uncompressed, ZIP(S), RLE and PIZ wavelet compression.
  6. * Supports reading 16 and 32 bit data format.
  7. *
  8. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  9. * implementation, so I have preserved their copyright notices.
  10. */
  11. import {
  12. DataTextureLoader,
  13. FloatType,
  14. HalfFloatType,
  15. LinearEncoding,
  16. LinearFilter,
  17. RGBAFormat,
  18. RGBFormat
  19. } from "../../../build/three.module.js";
  20. import { Zlib } from "../libs/inflate.module.min.js";
  21. // /*
  22. // Copyright (c) 2014 - 2017, Syoyo Fujita
  23. // All rights reserved.
  24. // Redistribution and use in source and binary forms, with or without
  25. // modification, are permitted provided that the following conditions are met:
  26. // * Redistributions of source code must retain the above copyright
  27. // notice, this list of conditions and the following disclaimer.
  28. // * Redistributions in binary form must reproduce the above copyright
  29. // notice, this list of conditions and the following disclaimer in the
  30. // documentation and/or other materials provided with the distribution.
  31. // * Neither the name of the Syoyo Fujita nor the
  32. // names of its contributors may be used to endorse or promote products
  33. // derived from this software without specific prior written permission.
  34. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  35. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  36. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  37. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  38. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  39. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  40. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  41. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  42. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  43. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  44. // */
  45. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  46. // ///////////////////////////////////////////////////////////////////////////
  47. // //
  48. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  49. // // Digital Ltd. LLC
  50. // //
  51. // // All rights reserved.
  52. // //
  53. // // Redistribution and use in source and binary forms, with or without
  54. // // modification, are permitted provided that the following conditions are
  55. // // met:
  56. // // * Redistributions of source code must retain the above copyright
  57. // // notice, this list of conditions and the following disclaimer.
  58. // // * Redistributions in binary form must reproduce the above
  59. // // copyright notice, this list of conditions and the following disclaimer
  60. // // in the documentation and/or other materials provided with the
  61. // // distribution.
  62. // // * Neither the name of Industrial Light & Magic nor the names of
  63. // // its contributors may be used to endorse or promote products derived
  64. // // from this software without specific prior written permission.
  65. // //
  66. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  67. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  68. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  69. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  70. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  71. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  72. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  73. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  74. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  75. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  76. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  77. // //
  78. // ///////////////////////////////////////////////////////////////////////////
  79. // // End of OpenEXR license -------------------------------------------------
  80. var EXRLoader = function ( manager ) {
  81. DataTextureLoader.call( this, manager );
  82. this.type = FloatType;
  83. };
  84. EXRLoader.prototype = Object.assign( Object.create( DataTextureLoader.prototype ), {
  85. constructor: EXRLoader,
  86. parse: function ( buffer ) {
  87. const USHORT_RANGE = ( 1 << 16 );
  88. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  89. const HUF_ENCBITS = 16; // literal (value) bit length
  90. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  91. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  92. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  93. const HUF_DECMASK = HUF_DECSIZE - 1;
  94. const SHORT_ZEROCODE_RUN = 59;
  95. const LONG_ZEROCODE_RUN = 63;
  96. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  97. const ULONG_SIZE = 8;
  98. const FLOAT32_SIZE = 4;
  99. const INT32_SIZE = 4;
  100. const INT16_SIZE = 2;
  101. const INT8_SIZE = 1;
  102. const STATIC_HUFFMAN = 0;
  103. const DEFLATE = 1;
  104. const UNKNOWN = 0;
  105. const LOSSY_DCT = 1;
  106. const RLE = 2;
  107. const logBase = Math.pow( 2.7182818, 2.2 );
  108. function reverseLutFromBitmap( bitmap, lut ) {
  109. var k = 0;
  110. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  111. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  112. lut[ k ++ ] = i;
  113. }
  114. }
  115. var n = k - 1;
  116. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  117. return n;
  118. }
  119. function hufClearDecTable( hdec ) {
  120. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  121. hdec[ i ] = {};
  122. hdec[ i ].len = 0;
  123. hdec[ i ].lit = 0;
  124. hdec[ i ].p = null;
  125. }
  126. }
  127. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  128. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  129. while ( lc < nBits ) {
  130. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  131. lc += 8;
  132. }
  133. lc -= nBits;
  134. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  135. getBitsReturn.c = c;
  136. getBitsReturn.lc = lc;
  137. }
  138. const hufTableBuffer = new Array( 59 );
  139. function hufCanonicalCodeTable( hcode ) {
  140. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  141. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  142. var c = 0;
  143. for ( var i = 58; i > 0; -- i ) {
  144. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  145. hufTableBuffer[ i ] = c;
  146. c = nc;
  147. }
  148. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  149. var l = hcode[ i ];
  150. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  151. }
  152. }
  153. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  154. var p = inOffset;
  155. var c = 0;
  156. var lc = 0;
  157. for ( ; im <= iM; im ++ ) {
  158. if ( p.value - inOffset.value > ni ) return false;
  159. getBits( 6, c, lc, uInt8Array, p );
  160. var l = getBitsReturn.l;
  161. c = getBitsReturn.c;
  162. lc = getBitsReturn.lc;
  163. hcode[ im ] = l;
  164. if ( l == LONG_ZEROCODE_RUN ) {
  165. if ( p.value - inOffset.value > ni ) {
  166. throw 'Something wrong with hufUnpackEncTable';
  167. }
  168. getBits( 8, c, lc, uInt8Array, p );
  169. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  170. c = getBitsReturn.c;
  171. lc = getBitsReturn.lc;
  172. if ( im + zerun > iM + 1 ) {
  173. throw 'Something wrong with hufUnpackEncTable';
  174. }
  175. while ( zerun -- ) hcode[ im ++ ] = 0;
  176. im --;
  177. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  178. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  179. if ( im + zerun > iM + 1 ) {
  180. throw 'Something wrong with hufUnpackEncTable';
  181. }
  182. while ( zerun -- ) hcode[ im ++ ] = 0;
  183. im --;
  184. }
  185. }
  186. hufCanonicalCodeTable( hcode );
  187. }
  188. function hufLength( code ) {
  189. return code & 63;
  190. }
  191. function hufCode( code ) {
  192. return code >> 6;
  193. }
  194. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  195. for ( ; im <= iM; im ++ ) {
  196. var c = hufCode( hcode[ im ] );
  197. var l = hufLength( hcode[ im ] );
  198. if ( c >> l ) {
  199. throw 'Invalid table entry';
  200. }
  201. if ( l > HUF_DECBITS ) {
  202. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  203. if ( pl.len ) {
  204. throw 'Invalid table entry';
  205. }
  206. pl.lit ++;
  207. if ( pl.p ) {
  208. var p = pl.p;
  209. pl.p = new Array( pl.lit );
  210. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  211. pl.p[ i ] = p[ i ];
  212. }
  213. } else {
  214. pl.p = new Array( 1 );
  215. }
  216. pl.p[ pl.lit - 1 ] = im;
  217. } else if ( l ) {
  218. var plOffset = 0;
  219. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  220. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  221. if ( pl.len || pl.p ) {
  222. throw 'Invalid table entry';
  223. }
  224. pl.len = l;
  225. pl.lit = im;
  226. plOffset ++;
  227. }
  228. }
  229. }
  230. return true;
  231. }
  232. const getCharReturn = { c: 0, lc: 0 };
  233. function getChar( c, lc, uInt8Array, inOffset ) {
  234. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  235. lc += 8;
  236. getCharReturn.c = c;
  237. getCharReturn.lc = lc;
  238. }
  239. const getCodeReturn = { c: 0, lc: 0 };
  240. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  241. if ( po == rlc ) {
  242. if ( lc < 8 ) {
  243. getChar( c, lc, uInt8Array, inOffset );
  244. c = getCharReturn.c;
  245. lc = getCharReturn.lc;
  246. }
  247. lc -= 8;
  248. var cs = ( c >> lc );
  249. var cs = new Uint8Array( [ cs ] )[ 0 ];
  250. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  251. return false;
  252. }
  253. var s = outBuffer[ outBufferOffset.value - 1 ];
  254. while ( cs -- > 0 ) {
  255. outBuffer[ outBufferOffset.value ++ ] = s;
  256. }
  257. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  258. outBuffer[ outBufferOffset.value ++ ] = po;
  259. } else {
  260. return false;
  261. }
  262. getCodeReturn.c = c;
  263. getCodeReturn.lc = lc;
  264. }
  265. function UInt16( value ) {
  266. return ( value & 0xFFFF );
  267. }
  268. function Int16( value ) {
  269. var ref = UInt16( value );
  270. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  271. }
  272. const wdec14Return = { a: 0, b: 0 };
  273. function wdec14( l, h ) {
  274. var ls = Int16( l );
  275. var hs = Int16( h );
  276. var hi = hs;
  277. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  278. var as = ai;
  279. var bs = ai - hi;
  280. wdec14Return.a = as;
  281. wdec14Return.b = bs;
  282. }
  283. function wav2Decode( buffer, j, nx, ox, ny, oy ) {
  284. var n = ( nx > ny ) ? ny : nx;
  285. var p = 1;
  286. var p2;
  287. while ( p <= n ) p <<= 1;
  288. p >>= 1;
  289. p2 = p;
  290. p >>= 1;
  291. while ( p >= 1 ) {
  292. var py = 0;
  293. var ey = py + oy * ( ny - p2 );
  294. var oy1 = oy * p;
  295. var oy2 = oy * p2;
  296. var ox1 = ox * p;
  297. var ox2 = ox * p2;
  298. var i00, i01, i10, i11;
  299. for ( ; py <= ey; py += oy2 ) {
  300. var px = py;
  301. var ex = py + ox * ( nx - p2 );
  302. for ( ; px <= ex; px += ox2 ) {
  303. var p01 = px + ox1;
  304. var p10 = px + oy1;
  305. var p11 = p10 + ox1;
  306. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  307. i00 = wdec14Return.a;
  308. i10 = wdec14Return.b;
  309. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  310. i01 = wdec14Return.a;
  311. i11 = wdec14Return.b;
  312. wdec14( i00, i01 );
  313. buffer[ px + j ] = wdec14Return.a;
  314. buffer[ p01 + j ] = wdec14Return.b;
  315. wdec14( i10, i11 );
  316. buffer[ p10 + j ] = wdec14Return.a;
  317. buffer[ p11 + j ] = wdec14Return.b;
  318. }
  319. if ( nx & p ) {
  320. var p10 = px + oy1;
  321. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  322. i00 = wdec14Return.a;
  323. buffer[ p10 + j ] = wdec14Return.b;
  324. buffer[ px + j ] = i00;
  325. }
  326. }
  327. if ( ny & p ) {
  328. var px = py;
  329. var ex = py + ox * ( nx - p2 );
  330. for ( ; px <= ex; px += ox2 ) {
  331. var p01 = px + ox1;
  332. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  333. i00 = wdec14Return.a;
  334. buffer[ p01 + j ] = wdec14Return.b;
  335. buffer[ px + j ] = i00;
  336. }
  337. }
  338. p2 = p;
  339. p >>= 1;
  340. }
  341. return py;
  342. }
  343. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  344. var c = 0;
  345. var lc = 0;
  346. var outBufferEndOffset = no;
  347. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  348. while ( inOffset.value < inOffsetEnd ) {
  349. getChar( c, lc, uInt8Array, inOffset );
  350. c = getCharReturn.c;
  351. lc = getCharReturn.lc;
  352. while ( lc >= HUF_DECBITS ) {
  353. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  354. var pl = decodingTable[ index ];
  355. if ( pl.len ) {
  356. lc -= pl.len;
  357. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  358. c = getCodeReturn.c;
  359. lc = getCodeReturn.lc;
  360. } else {
  361. if ( ! pl.p ) {
  362. throw 'hufDecode issues';
  363. }
  364. var j;
  365. for ( j = 0; j < pl.lit; j ++ ) {
  366. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  367. while ( lc < l && inOffset.value < inOffsetEnd ) {
  368. getChar( c, lc, uInt8Array, inOffset );
  369. c = getCharReturn.c;
  370. lc = getCharReturn.lc;
  371. }
  372. if ( lc >= l ) {
  373. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  374. lc -= l;
  375. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  376. c = getCodeReturn.c;
  377. lc = getCodeReturn.lc;
  378. break;
  379. }
  380. }
  381. }
  382. if ( j == pl.lit ) {
  383. throw 'hufDecode issues';
  384. }
  385. }
  386. }
  387. }
  388. var i = ( 8 - ni ) & 7;
  389. c >>= i;
  390. lc -= i;
  391. while ( lc > 0 ) {
  392. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  393. if ( pl.len ) {
  394. lc -= pl.len;
  395. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  396. c = getCodeReturn.c;
  397. lc = getCodeReturn.lc;
  398. } else {
  399. throw 'hufDecode issues';
  400. }
  401. }
  402. return true;
  403. }
  404. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  405. var outOffset = { value: 0 };
  406. var initialInOffset = inOffset.value;
  407. var im = parseUint32( inDataView, inOffset );
  408. var iM = parseUint32( inDataView, inOffset );
  409. inOffset.value += 4;
  410. var nBits = parseUint32( inDataView, inOffset );
  411. inOffset.value += 4;
  412. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  413. throw 'Something wrong with HUF_ENCSIZE';
  414. }
  415. var freq = new Array( HUF_ENCSIZE );
  416. var hdec = new Array( HUF_DECSIZE );
  417. hufClearDecTable( hdec );
  418. var ni = nCompressed - ( inOffset.value - initialInOffset );
  419. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  420. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  421. throw 'Something wrong with hufUncompress';
  422. }
  423. hufBuildDecTable( freq, im, iM, hdec );
  424. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  425. }
  426. function applyLut( lut, data, nData ) {
  427. for ( var i = 0; i < nData; ++ i ) {
  428. data[ i ] = lut[ data[ i ] ];
  429. }
  430. }
  431. function predictor( source ) {
  432. for ( var t = 1; t < source.length; t ++ ) {
  433. var d = source[ t - 1 ] + source[ t ] - 128;
  434. source[ t ] = d;
  435. }
  436. }
  437. function interleaveScalar( source, out ) {
  438. var t1 = 0;
  439. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  440. var s = 0;
  441. var stop = source.length - 1;
  442. while ( true ) {
  443. if ( s > stop ) break;
  444. out[ s ++ ] = source[ t1 ++ ];
  445. if ( s > stop ) break;
  446. out[ s ++ ] = source[ t2 ++ ];
  447. }
  448. }
  449. function decodeRunLength( source ) {
  450. var size = source.byteLength;
  451. var out = new Array();
  452. var p = 0;
  453. var reader = new DataView( source );
  454. while ( size > 0 ) {
  455. var l = reader.getInt8( p ++ );
  456. if ( l < 0 ) {
  457. var count = - l;
  458. size -= count + 1;
  459. for ( var i = 0; i < count; i ++ ) {
  460. out.push( reader.getUint8( p ++ ) );
  461. }
  462. } else {
  463. var count = l;
  464. size -= 2;
  465. var value = reader.getUint8( p ++ );
  466. for ( var i = 0; i < count + 1; i ++ ) {
  467. out.push( value );
  468. }
  469. }
  470. }
  471. return out;
  472. }
  473. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  474. var dataView = new DataView( outBuffer.buffer );
  475. var width = channelData[ cscSet.idx[ 0 ] ].width;
  476. var height = channelData[ cscSet.idx[ 0 ] ].height;
  477. var numComp = 3;
  478. var numFullBlocksX = Math.floor( width / 8.0 );
  479. var numBlocksX = Math.ceil( width / 8.0 );
  480. var numBlocksY = Math.ceil( height / 8.0 );
  481. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  482. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  483. var currAcComp = { value: 0 };
  484. var currDcComp = new Array( numComp );
  485. var dctData = new Array( numComp );
  486. var halfZigBlock = new Array( numComp );
  487. var rowBlock = new Array( numComp );
  488. var rowOffsets = new Array( numComp );
  489. for ( let comp = 0; comp < numComp; ++ comp ) {
  490. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  491. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  492. dctData[ comp ] = new Float32Array( 64 );
  493. halfZigBlock[ comp ] = new Uint16Array( 64 );
  494. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  495. }
  496. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  497. var maxY = 8;
  498. if ( blocky == numBlocksY - 1 )
  499. maxY = leftoverY;
  500. var maxX = 8;
  501. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  502. if ( blockx == numBlocksX - 1 )
  503. maxX = leftoverX;
  504. for ( let comp = 0; comp < numComp; ++ comp ) {
  505. halfZigBlock[ comp ].fill( 0 );
  506. // set block DC component
  507. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
  508. // set block AC components
  509. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  510. // UnZigZag block to float
  511. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  512. // decode float dct
  513. dctInverse( dctData[ comp ] );
  514. }
  515. if ( numComp == 3 ) {
  516. csc709Inverse( dctData );
  517. }
  518. for ( let comp = 0; comp < numComp; ++ comp ) {
  519. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  520. }
  521. } // blockx
  522. let offset = 0;
  523. for ( let comp = 0; comp < numComp; ++ comp ) {
  524. let type = channelData[ cscSet.idx[ comp ] ].type;
  525. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  526. offset = rowOffsets[ comp ][ y ];
  527. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  528. let src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  529. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  530. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  531. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  532. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  533. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  534. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  535. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  536. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  537. offset += 8 * INT16_SIZE * type;
  538. }
  539. }
  540. // handle partial X blocks
  541. if ( numFullBlocksX != numBlocksX ) {
  542. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  543. let offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  544. let src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  545. for ( let x = 0; x < maxX; ++ x ) {
  546. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  547. }
  548. }
  549. }
  550. } // comp
  551. } // blocky
  552. var halfRow = new Uint16Array( width );
  553. var dataView = new DataView( outBuffer.buffer );
  554. // convert channels back to float, if needed
  555. for ( var comp = 0; comp < numComp; ++ comp ) {
  556. channelData[ cscSet.idx[ comp ] ].decoded = true;
  557. var type = channelData[ cscSet.idx[ comp ] ].type;
  558. if ( channelData[ comp ].type != 2 ) continue;
  559. for ( var y = 0; y < height; ++ y ) {
  560. let offset = rowOffsets[ comp ][ y ];
  561. for ( var x = 0; x < width; ++ x ) {
  562. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  563. }
  564. for ( var x = 0; x < width; ++ x ) {
  565. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  566. }
  567. }
  568. }
  569. }
  570. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  571. var acValue;
  572. var dctComp = 1;
  573. while ( dctComp < 64 ) {
  574. acValue = acBuffer[ currAcComp.value ];
  575. if ( acValue == 0xff00 ) {
  576. dctComp = 64;
  577. } else if ( acValue >> 8 == 0xff ) {
  578. dctComp += acValue & 0xff;
  579. } else {
  580. halfZigBlock[ dctComp ] = acValue;
  581. dctComp ++;
  582. }
  583. currAcComp.value ++;
  584. }
  585. }
  586. function unZigZag( src, dst ) {
  587. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  588. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  589. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  590. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  591. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  592. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  593. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  594. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  595. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  596. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  597. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  598. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  599. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  600. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  601. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  602. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  603. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  604. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  605. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  606. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  607. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  608. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  609. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  610. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  611. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  612. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  613. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  614. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  615. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  616. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  617. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  618. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  619. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  620. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  621. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  622. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  623. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  624. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  625. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  626. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  627. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  628. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  629. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  630. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  631. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  632. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  633. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  634. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  635. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  636. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  637. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  638. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  639. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  640. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  641. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  642. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  643. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  644. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  645. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  646. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  647. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  648. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  649. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  650. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  651. }
  652. function dctInverse( data ) {
  653. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  654. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  655. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  656. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  657. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  658. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  659. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  660. var alpha = new Array( 4 );
  661. var beta = new Array( 4 );
  662. var theta = new Array( 4 );
  663. var gamma = new Array( 4 );
  664. for ( var row = 0; row < 8; ++ row ) {
  665. var rowPtr = row * 8;
  666. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  667. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  668. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  669. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  670. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  671. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  672. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  673. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  674. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  675. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  676. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  677. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  678. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  679. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  680. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  681. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  682. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  683. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  684. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  685. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  686. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  687. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  688. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  689. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  690. }
  691. for ( var column = 0; column < 8; ++ column ) {
  692. alpha[ 0 ] = c * data[ 16 + column ];
  693. alpha[ 1 ] = f * data[ 16 + column ];
  694. alpha[ 2 ] = c * data[ 48 + column ];
  695. alpha[ 3 ] = f * data[ 48 + column ];
  696. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  697. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  698. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  699. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  700. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  701. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  702. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  703. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  704. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  705. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  706. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  707. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  708. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  709. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  710. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  711. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  712. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  713. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  714. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  715. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  716. }
  717. }
  718. function csc709Inverse( data ) {
  719. for ( var i = 0; i < 64; ++ i ) {
  720. var y = data[ 0 ][ i ];
  721. var cb = data[ 1 ][ i ];
  722. var cr = data[ 2 ][ i ];
  723. data[ 0 ][ i ] = y + 1.5747 * cr;
  724. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  725. data[ 2 ][ i ] = y + 1.8556 * cb;
  726. }
  727. }
  728. function convertToHalf( src, dst, idx ) {
  729. for ( var i = 0; i < 64; ++ i ) {
  730. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  731. }
  732. }
  733. function toLinear( float ) {
  734. if ( float <= 1 ) {
  735. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  736. } else {
  737. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  738. }
  739. }
  740. function uncompressRAW( info ) {
  741. return new DataView( info.array.buffer, info.offset.value, info.size );
  742. }
  743. function uncompressRLE( info ) {
  744. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  745. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  746. var tmpBuffer = new Uint8Array( rawBuffer.length );
  747. predictor( rawBuffer ); // revert predictor
  748. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  749. return new DataView( tmpBuffer.buffer );
  750. }
  751. function uncompressZIP( info ) {
  752. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  753. if ( typeof Zlib === 'undefined' ) {
  754. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  755. }
  756. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  757. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  758. var tmpBuffer = new Uint8Array( rawBuffer.length );
  759. predictor( rawBuffer ); // revert predictor
  760. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  761. return new DataView( tmpBuffer.buffer );
  762. }
  763. function uncompressPIZ( info ) {
  764. var inDataView = info.viewer;
  765. var inOffset = { value: info.offset.value };
  766. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  767. var outBuffer = new Uint16Array( tmpBufSize );
  768. var bitmap = new Uint8Array( BITMAP_SIZE );
  769. // Setup channel info
  770. var outBufferEnd = 0;
  771. var pizChannelData = new Array( info.channels );
  772. for ( var i = 0; i < info.channels; i ++ ) {
  773. pizChannelData[ i ] = {};
  774. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  775. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  776. pizChannelData[ i ][ 'nx' ] = info.width;
  777. pizChannelData[ i ][ 'ny' ] = info.lines;
  778. pizChannelData[ i ][ 'size' ] = info.type;
  779. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  780. }
  781. // Read range compression data
  782. var minNonZero = parseUint16( inDataView, inOffset );
  783. var maxNonZero = parseUint16( inDataView, inOffset );
  784. if ( maxNonZero >= BITMAP_SIZE ) {
  785. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  786. }
  787. if ( minNonZero <= maxNonZero ) {
  788. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  789. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  790. }
  791. }
  792. // Reverse LUT
  793. var lut = new Uint16Array( USHORT_RANGE );
  794. reverseLutFromBitmap( bitmap, lut );
  795. var length = parseUint32( inDataView, inOffset );
  796. // Huffman decoding
  797. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  798. // Wavelet decoding
  799. for ( var i = 0; i < info.channels; ++ i ) {
  800. var cd = pizChannelData[ i ];
  801. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  802. wav2Decode(
  803. outBuffer,
  804. cd.start + j,
  805. cd.nx,
  806. cd.size,
  807. cd.ny,
  808. cd.nx * cd.size
  809. );
  810. }
  811. }
  812. // Expand the pixel data to their original range
  813. applyLut( lut, outBuffer, outBufferEnd );
  814. // Rearrange the pixel data into the format expected by the caller.
  815. var tmpOffset = 0;
  816. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  817. for ( var y = 0; y < info.lines; y ++ ) {
  818. for ( var c = 0; c < info.channels; c ++ ) {
  819. var cd = pizChannelData[ c ];
  820. var n = cd.nx * cd.size;
  821. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  822. tmpBuffer.set( cp, tmpOffset );
  823. tmpOffset += n * INT16_SIZE;
  824. cd.end += n;
  825. }
  826. }
  827. return new DataView( tmpBuffer.buffer );
  828. }
  829. function uncompressDWA( info ) {
  830. var inDataView = info.viewer;
  831. var inOffset = { value: info.offset.value };
  832. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  833. // Read compression header information
  834. var dwaHeader = {
  835. version: parseInt64( inDataView, inOffset ),
  836. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  837. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  838. acCompressedSize: parseInt64( inDataView, inOffset ),
  839. dcCompressedSize: parseInt64( inDataView, inOffset ),
  840. rleCompressedSize: parseInt64( inDataView, inOffset ),
  841. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  842. rleRawSize: parseInt64( inDataView, inOffset ),
  843. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  844. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  845. acCompression: parseInt64( inDataView, inOffset )
  846. };
  847. if ( dwaHeader.version < 2 )
  848. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  849. // Read channel ruleset information
  850. var channelRules = new Array();
  851. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  852. while ( ruleSize > 0 ) {
  853. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  854. var value = parseUint8( inDataView, inOffset );
  855. var compression = ( value >> 2 ) & 3;
  856. var csc = ( value >> 4 ) - 1;
  857. var index = new Int8Array( [ csc ] )[ 0 ];
  858. var type = parseUint8( inDataView, inOffset );
  859. channelRules.push( {
  860. name: name,
  861. index: index,
  862. type: type,
  863. compression: compression,
  864. } );
  865. ruleSize -= name.length + 3;
  866. }
  867. // Classify channels
  868. var channels = EXRHeader.channels;
  869. var channelData = new Array( info.channels );
  870. for ( var i = 0; i < info.channels; ++ i ) {
  871. var cd = channelData[ i ] = {};
  872. var channel = channels[ i ];
  873. cd.name = channel.name;
  874. cd.compression = UNKNOWN;
  875. cd.decoded = false;
  876. cd.type = channel.pixelType;
  877. cd.pLinear = channel.pLinear;
  878. cd.width = info.width;
  879. cd.height = info.lines;
  880. }
  881. var cscSet = {
  882. idx: new Array( 3 )
  883. };
  884. for ( var offset = 0; offset < info.channels; ++ offset ) {
  885. var cd = channelData[ offset ];
  886. for ( var i = 0; i < channelRules.length; ++ i ) {
  887. var rule = channelRules[ i ];
  888. if ( cd.name == rule.name ) {
  889. cd.compression = rule.compression;
  890. if ( rule.index >= 0 ) {
  891. cscSet.idx[ rule.index ] = offset;
  892. }
  893. cd.offset = offset;
  894. }
  895. }
  896. }
  897. // Read DCT - AC component data
  898. if ( dwaHeader.acCompressedSize > 0 ) {
  899. switch ( dwaHeader.acCompression ) {
  900. case STATIC_HUFFMAN:
  901. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  902. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  903. break;
  904. case DEFLATE:
  905. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  906. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  907. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  908. inOffset.value += dwaHeader.totalAcUncompressedCount;
  909. break;
  910. }
  911. }
  912. // Read DCT - DC component data
  913. if ( dwaHeader.dcCompressedSize > 0 ) {
  914. var zlibInfo = {
  915. array: info.array,
  916. offset: inOffset,
  917. size: dwaHeader.dcCompressedSize
  918. };
  919. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  920. inOffset.value += dwaHeader.dcCompressedSize;
  921. }
  922. // Read RLE compressed data
  923. if ( dwaHeader.rleRawSize > 0 ) {
  924. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  925. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  926. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  927. inOffset.value += dwaHeader.rleCompressedSize;
  928. }
  929. // Prepare outbuffer data offset
  930. var outBufferEnd = 0;
  931. var rowOffsets = new Array( channelData.length );
  932. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  933. rowOffsets[ i ] = new Array();
  934. }
  935. for ( var y = 0; y < info.lines; ++ y ) {
  936. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  937. rowOffsets[ chan ].push( outBufferEnd );
  938. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  939. }
  940. }
  941. // Lossy DCT decode RGB channels
  942. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  943. // Decode other channels
  944. for ( var i = 0; i < channelData.length; ++ i ) {
  945. var cd = channelData[ i ];
  946. if ( cd.decoded ) continue;
  947. switch ( cd.compression ) {
  948. case RLE:
  949. var row = 0;
  950. var rleOffset = 0;
  951. for ( var y = 0; y < info.lines; ++ y ) {
  952. var rowOffsetBytes = rowOffsets[ i ][ row ];
  953. for ( var x = 0; x < cd.width; ++ x ) {
  954. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  955. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  956. }
  957. rleOffset ++;
  958. }
  959. row ++;
  960. }
  961. break;
  962. case LOSSY_DCT: // skip
  963. default:
  964. throw 'EXRLoader.parse: unsupported channel compression';
  965. }
  966. }
  967. return new DataView( outBuffer.buffer );
  968. }
  969. function parseNullTerminatedString( buffer, offset ) {
  970. var uintBuffer = new Uint8Array( buffer );
  971. var endOffset = 0;
  972. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  973. endOffset += 1;
  974. }
  975. var stringValue = new TextDecoder().decode(
  976. uintBuffer.slice( offset.value, offset.value + endOffset )
  977. );
  978. offset.value = offset.value + endOffset + 1;
  979. return stringValue;
  980. }
  981. function parseFixedLengthString( buffer, offset, size ) {
  982. var stringValue = new TextDecoder().decode(
  983. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  984. );
  985. offset.value = offset.value + size;
  986. return stringValue;
  987. }
  988. function parseUlong( dataView, offset ) {
  989. var uLong = dataView.getUint32( 0, true );
  990. offset.value = offset.value + ULONG_SIZE;
  991. return uLong;
  992. }
  993. function parseUint32( dataView, offset ) {
  994. var Uint32 = dataView.getUint32( offset.value, true );
  995. offset.value = offset.value + INT32_SIZE;
  996. return Uint32;
  997. }
  998. function parseUint8Array( uInt8Array, offset ) {
  999. var Uint8 = uInt8Array[ offset.value ];
  1000. offset.value = offset.value + INT8_SIZE;
  1001. return Uint8;
  1002. }
  1003. function parseUint8( dataView, offset ) {
  1004. var Uint8 = dataView.getUint8( offset.value );
  1005. offset.value = offset.value + INT8_SIZE;
  1006. return Uint8;
  1007. }
  1008. function parseInt64( dataView, offset ) {
  1009. var int = Number( dataView.getBigInt64( offset.value, true ) );
  1010. offset.value += ULONG_SIZE;
  1011. return int;
  1012. }
  1013. function parseFloat32( dataView, offset ) {
  1014. var float = dataView.getFloat32( offset.value, true );
  1015. offset.value += FLOAT32_SIZE;
  1016. return float;
  1017. }
  1018. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1019. function decodeFloat16( binary ) {
  1020. var exponent = ( binary & 0x7C00 ) >> 10,
  1021. fraction = binary & 0x03FF;
  1022. return ( binary >> 15 ? - 1 : 1 ) * (
  1023. exponent ?
  1024. (
  1025. exponent === 0x1F ?
  1026. fraction ? NaN : Infinity :
  1027. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1028. ) :
  1029. 6.103515625e-5 * ( fraction / 0x400 )
  1030. );
  1031. }
  1032. var encodeFloat16 = ( function () {
  1033. // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
  1034. var floatView = new Float32Array( 1 );
  1035. var int32View = new Int32Array( floatView.buffer );
  1036. /* This method is faster than the OpenEXR implementation (very often
  1037. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  1038. * by James Tursa?s half-precision code. */
  1039. return function toHalf( val ) {
  1040. floatView[ 0 ] = val;
  1041. var x = int32View[ 0 ];
  1042. var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
  1043. var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
  1044. var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
  1045. /* If zero, or denormal, or exponent underflows too much for a denormal
  1046. * half, return signed zero. */
  1047. if ( e < 103 ) return bits;
  1048. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  1049. if ( e > 142 ) {
  1050. bits |= 0x7c00;
  1051. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  1052. * not Inf, so make sure we set one mantissa bit too. */
  1053. bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
  1054. return bits;
  1055. }
  1056. /* If exponent underflows but not too much, return a denormal */
  1057. if ( e < 113 ) {
  1058. m |= 0x0800;
  1059. /* Extra rounding may overflow and set mantissa to 0 and exponent
  1060. * to 1, which is OK. */
  1061. bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
  1062. return bits;
  1063. }
  1064. bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
  1065. /* Extra rounding. An overflow will set mantissa to 0 and increment
  1066. * the exponent, which is OK. */
  1067. bits += m & 1;
  1068. return bits;
  1069. };
  1070. } )();
  1071. function parseUint16( dataView, offset ) {
  1072. var Uint16 = dataView.getUint16( offset.value, true );
  1073. offset.value += INT16_SIZE;
  1074. return Uint16;
  1075. }
  1076. function parseFloat16( buffer, offset ) {
  1077. return decodeFloat16( parseUint16( buffer, offset ) );
  1078. }
  1079. function parseChlist( dataView, buffer, offset, size ) {
  1080. var startOffset = offset.value;
  1081. var channels = [];
  1082. while ( offset.value < ( startOffset + size - 1 ) ) {
  1083. var name = parseNullTerminatedString( buffer, offset );
  1084. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  1085. var pLinear = parseUint8( dataView, offset );
  1086. offset.value += 3; // reserved, three chars
  1087. var xSampling = parseUint32( dataView, offset );
  1088. var ySampling = parseUint32( dataView, offset );
  1089. channels.push( {
  1090. name: name,
  1091. pixelType: pixelType,
  1092. pLinear: pLinear,
  1093. xSampling: xSampling,
  1094. ySampling: ySampling
  1095. } );
  1096. }
  1097. offset.value += 1;
  1098. return channels;
  1099. }
  1100. function parseChromaticities( dataView, offset ) {
  1101. var redX = parseFloat32( dataView, offset );
  1102. var redY = parseFloat32( dataView, offset );
  1103. var greenX = parseFloat32( dataView, offset );
  1104. var greenY = parseFloat32( dataView, offset );
  1105. var blueX = parseFloat32( dataView, offset );
  1106. var blueY = parseFloat32( dataView, offset );
  1107. var whiteX = parseFloat32( dataView, offset );
  1108. var whiteY = parseFloat32( dataView, offset );
  1109. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1110. }
  1111. function parseCompression( dataView, offset ) {
  1112. var compressionCodes = [
  1113. 'NO_COMPRESSION',
  1114. 'RLE_COMPRESSION',
  1115. 'ZIPS_COMPRESSION',
  1116. 'ZIP_COMPRESSION',
  1117. 'PIZ_COMPRESSION',
  1118. 'PXR24_COMPRESSION',
  1119. 'B44_COMPRESSION',
  1120. 'B44A_COMPRESSION',
  1121. 'DWAA_COMPRESSION',
  1122. 'DWAB_COMPRESSION'
  1123. ];
  1124. var compression = parseUint8( dataView, offset );
  1125. return compressionCodes[ compression ];
  1126. }
  1127. function parseBox2i( dataView, offset ) {
  1128. var xMin = parseUint32( dataView, offset );
  1129. var yMin = parseUint32( dataView, offset );
  1130. var xMax = parseUint32( dataView, offset );
  1131. var yMax = parseUint32( dataView, offset );
  1132. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1133. }
  1134. function parseLineOrder( dataView, offset ) {
  1135. var lineOrders = [
  1136. 'INCREASING_Y'
  1137. ];
  1138. var lineOrder = parseUint8( dataView, offset );
  1139. return lineOrders[ lineOrder ];
  1140. }
  1141. function parseV2f( dataView, offset ) {
  1142. var x = parseFloat32( dataView, offset );
  1143. var y = parseFloat32( dataView, offset );
  1144. return [ x, y ];
  1145. }
  1146. function parseValue( dataView, buffer, offset, type, size ) {
  1147. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1148. return parseFixedLengthString( buffer, offset, size );
  1149. } else if ( type === 'chlist' ) {
  1150. return parseChlist( dataView, buffer, offset, size );
  1151. } else if ( type === 'chromaticities' ) {
  1152. return parseChromaticities( dataView, offset );
  1153. } else if ( type === 'compression' ) {
  1154. return parseCompression( dataView, offset );
  1155. } else if ( type === 'box2i' ) {
  1156. return parseBox2i( dataView, offset );
  1157. } else if ( type === 'lineOrder' ) {
  1158. return parseLineOrder( dataView, offset );
  1159. } else if ( type === 'float' ) {
  1160. return parseFloat32( dataView, offset );
  1161. } else if ( type === 'v2f' ) {
  1162. return parseV2f( dataView, offset );
  1163. } else if ( type === 'int' ) {
  1164. return parseUint32( dataView, offset );
  1165. } else {
  1166. throw 'Cannot parse value for unsupported type: ' + type;
  1167. }
  1168. }
  1169. var bufferDataView = new DataView( buffer );
  1170. var uInt8Array = new Uint8Array( buffer );
  1171. var EXRHeader = {};
  1172. bufferDataView.getUint32( 0, true ); // magic
  1173. bufferDataView.getUint8( 4, true ); // versionByteZero
  1174. bufferDataView.getUint8( 5, true ); // fullMask
  1175. // start of header
  1176. var offset = { value: 8 }; // start at 8, after magic stuff
  1177. var keepReading = true;
  1178. while ( keepReading ) {
  1179. var attributeName = parseNullTerminatedString( buffer, offset );
  1180. if ( attributeName == 0 ) {
  1181. keepReading = false;
  1182. } else {
  1183. var attributeType = parseNullTerminatedString( buffer, offset );
  1184. var attributeSize = parseUint32( bufferDataView, offset );
  1185. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1186. EXRHeader[ attributeName ] = attributeValue;
  1187. }
  1188. }
  1189. // offsets
  1190. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1191. var uncompress;
  1192. var scanlineBlockSize;
  1193. switch ( EXRHeader.compression ) {
  1194. case 'NO_COMPRESSION':
  1195. scanlineBlockSize = 1;
  1196. uncompress = uncompressRAW;
  1197. break;
  1198. case 'RLE_COMPRESSION':
  1199. scanlineBlockSize = 1;
  1200. uncompress = uncompressRLE;
  1201. break;
  1202. case 'ZIPS_COMPRESSION':
  1203. scanlineBlockSize = 1;
  1204. uncompress = uncompressZIP;
  1205. break;
  1206. case 'ZIP_COMPRESSION':
  1207. scanlineBlockSize = 16;
  1208. uncompress = uncompressZIP;
  1209. break;
  1210. case 'PIZ_COMPRESSION':
  1211. scanlineBlockSize = 32;
  1212. uncompress = uncompressPIZ;
  1213. break;
  1214. case 'DWAA_COMPRESSION':
  1215. scanlineBlockSize = 32;
  1216. uncompress = uncompressDWA;
  1217. break;
  1218. case 'DWAB_COMPRESSION':
  1219. scanlineBlockSize = 256;
  1220. uncompress = uncompressDWA;
  1221. break;
  1222. default:
  1223. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1224. }
  1225. var size_t;
  1226. var getValue;
  1227. // mixed pixelType not supported
  1228. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1229. if ( pixelType === 1 ) { // half
  1230. switch ( this.type ) {
  1231. case FloatType:
  1232. getValue = parseFloat16;
  1233. size_t = INT16_SIZE;
  1234. break;
  1235. case HalfFloatType:
  1236. getValue = parseUint16;
  1237. size_t = INT16_SIZE;
  1238. break;
  1239. }
  1240. } else if ( pixelType === 2 ) { // float
  1241. switch ( this.type ) {
  1242. case FloatType:
  1243. getValue = parseFloat32;
  1244. size_t = FLOAT32_SIZE;
  1245. break;
  1246. case HalfFloatType:
  1247. throw 'EXRLoader.parse: unsupported HalfFloatType texture for FloatType image file.';
  1248. }
  1249. } else {
  1250. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1251. }
  1252. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1253. for ( var i = 0; i < numBlocks; i ++ ) {
  1254. parseUlong( bufferDataView, offset ); // scanlineOffset
  1255. }
  1256. // we should be passed the scanline offset table, start reading pixel data
  1257. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1258. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1259. // Firefox only supports RGBA (half) float textures
  1260. // var numChannels = EXRHeader.channels.length;
  1261. var numChannels = 4;
  1262. var size = width * height * numChannels;
  1263. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1264. switch ( this.type ) {
  1265. case FloatType:
  1266. var byteArray = new Float32Array( size );
  1267. if ( EXRHeader.channels.length < numChannels ) {
  1268. byteArray.fill( 1, 0, size );
  1269. }
  1270. break;
  1271. case HalfFloatType:
  1272. var byteArray = new Uint16Array( size );
  1273. if ( EXRHeader.channels.length < numChannels ) {
  1274. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1275. }
  1276. break;
  1277. default:
  1278. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1279. break;
  1280. }
  1281. var channelOffsets = {
  1282. R: 0,
  1283. G: 1,
  1284. B: 2,
  1285. A: 3
  1286. };
  1287. var compressionInfo = {
  1288. size: 0,
  1289. width: width,
  1290. lines: scanlineBlockSize,
  1291. offset: offset,
  1292. array: uInt8Array,
  1293. viewer: bufferDataView,
  1294. type: pixelType,
  1295. channels: EXRHeader.channels.length,
  1296. };
  1297. var line;
  1298. var size;
  1299. var viewer;
  1300. var tmpOffset = { value: 0 };
  1301. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1302. line = parseUint32( bufferDataView, offset ); // line_no
  1303. size = parseUint32( bufferDataView, offset ); // data_len
  1304. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1305. compressionInfo.offset = offset;
  1306. compressionInfo.size = size;
  1307. viewer = uncompress( compressionInfo );
  1308. offset.value += size;
  1309. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1310. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1311. if ( true_y >= height ) break;
  1312. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1313. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1314. for ( var x = 0; x < width; x ++ ) {
  1315. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1316. tmpOffset.value = idx * size_t;
  1317. var val = getValue( viewer, tmpOffset );
  1318. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1319. }
  1320. }
  1321. }
  1322. }
  1323. return {
  1324. header: EXRHeader,
  1325. width: width,
  1326. height: height,
  1327. data: byteArray,
  1328. format: numChannels === 4 ? RGBAFormat : RGBFormat,
  1329. type: this.type
  1330. };
  1331. },
  1332. setDataType: function ( value ) {
  1333. this.type = value;
  1334. return this;
  1335. },
  1336. load: function ( url, onLoad, onProgress, onError ) {
  1337. function onLoadCallback( texture, texData ) {
  1338. switch ( texture.type ) {
  1339. case FloatType:
  1340. texture.encoding = LinearEncoding;
  1341. texture.minFilter = LinearFilter;
  1342. texture.magFilter = LinearFilter;
  1343. texture.generateMipmaps = false;
  1344. texture.flipY = false;
  1345. break;
  1346. case HalfFloatType:
  1347. texture.encoding = LinearEncoding;
  1348. texture.minFilter = LinearFilter;
  1349. texture.magFilter = LinearFilter;
  1350. texture.generateMipmaps = false;
  1351. texture.flipY = false;
  1352. break;
  1353. }
  1354. if ( onLoad ) onLoad( texture, texData );
  1355. }
  1356. return DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1357. }
  1358. } );
  1359. export { EXRLoader };