123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- /**
- * @author mikael emtinger / http://gomo.se/
- * @author alteredq / http://alteredqualia.com/
- */
- THREE.Quaternion = function( x, y, z, w ) {
- this.x = x || 0;
- this.y = y || 0;
- this.z = z || 0;
- this.w = ( w !== undefined ) ? w : 1;
- };
- THREE.Quaternion.prototype = {
- constructor: THREE.Quaternion,
- set: function ( x, y, z, w ) {
- this.x = x;
- this.y = y;
- this.z = z;
- this.w = w;
- return this;
- },
- copy: function ( q ) {
- this.x = q.x;
- this.y = q.y;
- this.z = q.z;
- this.w = q.w;
- return this;
- },
- setFromEuler: function ( vector ) {
- var c = Math.PI / 360, // 0.5 * Math.PI / 360, // 0.5 is an optimization
- x = vector.x * c,
- y = vector.y * c,
- z = vector.z * c,
- c1 = Math.cos( y ),
- s1 = Math.sin( y ),
- c2 = Math.cos( -z ),
- s2 = Math.sin( -z ),
- c3 = Math.cos( x ),
- s3 = Math.sin( x ),
- c1c2 = c1 * c2,
- s1s2 = s1 * s2;
- this.w = c1c2 * c3 - s1s2 * s3;
- this.x = c1c2 * s3 + s1s2 * c3;
- this.y = s1 * c2 * c3 + c1 * s2 * s3;
- this.z = c1 * s2 * c3 - s1 * c2 * s3;
- return this;
- },
- setFromAxisAngle: function ( axis, angle ) {
- // from http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
- // axis have to be normalized
- var halfAngle = angle / 2,
- s = Math.sin( halfAngle );
- this.x = axis.x * s;
- this.y = axis.y * s;
- this.z = axis.z * s;
- this.w = Math.cos( halfAngle );
- return this;
- },
- setFromRotationMatrix: function ( m ) {
- // Adapted from: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
- function copySign( a, b ) {
- return b < 0 ? -Math.abs( a ) : Math.abs( a );
- }
- var absQ = Math.pow( m.determinant(), 1.0 / 3.0 );
- this.w = Math.sqrt( Math.max( 0, absQ + m.elements[0] + m.elements[5] + m.elements[10] ) ) / 2;
- this.x = Math.sqrt( Math.max( 0, absQ + m.elements[0] - m.elements[5] - m.elements[10] ) ) / 2;
- this.y = Math.sqrt( Math.max( 0, absQ - m.elements[0] + m.elements[5] - m.elements[10] ) ) / 2;
- this.z = Math.sqrt( Math.max( 0, absQ - m.elements[0] - m.elements[5] + m.elements[10] ) ) / 2;
- this.x = copySign( this.x, ( m.elements[6] - m.elements[9] ) );
- this.y = copySign( this.y, ( m.elements[8] - m.elements[2] ) );
- this.z = copySign( this.z, ( m.elements[1] - m.elements[4] ) );
- this.normalize();
- return this;
- },
- calculateW : function () {
- this.w = - Math.sqrt( Math.abs( 1.0 - this.x * this.x - this.y * this.y - this.z * this.z ) );
- return this;
- },
- inverse: function () {
- this.x *= -1;
- this.y *= -1;
- this.z *= -1;
- return this;
- },
- length: function () {
- return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
- },
- normalize: function () {
- var l = Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
- if ( l === 0 ) {
- this.x = 0;
- this.y = 0;
- this.z = 0;
- this.w = 0;
- } else {
- l = 1 / l;
- this.x = this.x * l;
- this.y = this.y * l;
- this.z = this.z * l;
- this.w = this.w * l;
- }
- return this;
- },
- multiply: function ( a, b ) {
- // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
- this.x = a.x * b.w + a.y * b.z - a.z * b.y + a.w * b.x;
- this.y = -a.x * b.z + a.y * b.w + a.z * b.x + a.w * b.y;
- this.z = a.x * b.y - a.y * b.x + a.z * b.w + a.w * b.z;
- this.w = -a.x * b.x - a.y * b.y - a.z * b.z + a.w * b.w;
- return this;
- },
- multiplySelf: function ( b ) {
- var qax = this.x, qay = this.y, qaz = this.z, qaw = this.w,
- qbx = b.x, qby = b.y, qbz = b.z, qbw = b.w;
- this.x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
- this.y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
- this.z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
- this.w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
- return this;
- },
- multiplyVector3: function ( vector, dest ) {
- if ( !dest ) { dest = vector; }
- var x = vector.x, y = vector.y, z = vector.z,
- qx = this.x, qy = this.y, qz = this.z, qw = this.w;
- // calculate quat * vector
- var ix = qw * x + qy * z - qz * y,
- iy = qw * y + qz * x - qx * z,
- iz = qw * z + qx * y - qy * x,
- iw = -qx * x - qy * y - qz * z;
- // calculate result * inverse quat
- dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return dest;
- },
- slerpSelf: function ( qb, t ) {
- var x = this.x, y = this.y, z = this.z, w = this.w;
- // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
- var cosHalfTheta = w * qb.w + x * qb.x + y * qb.y + z * qb.z;
- if ( cosHalfTheta < 0 ) {
- this.w = -qb.w;
- this.x = -qb.x;
- this.y = -qb.y;
- this.z = -qb.z;
- cosHalfTheta = -cosHalfTheta;
- } else {
- this.copy( qb );
- }
- if ( cosHalfTheta >= 1.0 ) {
- this.w = w;
- this.x = x;
- this.y = y;
- this.z = z;
- return this;
- }
- var halfTheta = Math.acos( cosHalfTheta );
- var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
- if ( Math.abs( sinHalfTheta ) < 0.001 ) {
- this.w = 0.5 * ( w + this.w );
- this.x = 0.5 * ( x + this.x );
- this.y = 0.5 * ( y + this.y );
- this.z = 0.5 * ( z + this.z );
- return this;
- }
- var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
- ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
- this.w = ( w * ratioA + this.w * ratioB );
- this.x = ( x * ratioA + this.x * ratioB );
- this.y = ( y * ratioA + this.y * ratioB );
- this.z = ( z * ratioA + this.z * ratioB );
- return this;
- },
- clone: function () {
- return new THREE.Quaternion( this.x, this.y, this.z, this.w );
- }
- }
- THREE.Quaternion.slerp = function ( qa, qb, qm, t ) {
- // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
- var cosHalfTheta = qa.w * qb.w + qa.x * qb.x + qa.y * qb.y + qa.z * qb.z;
- if ( cosHalfTheta < 0 ) {
- qm.w = -qb.w;
- qm.x = -qb.x;
- qm.y = -qb.y;
- qm.z = -qb.z;
- cosHalfTheta = -cosHalfTheta;
- } else {
- qm.copy( qb );
- }
- if ( Math.abs( cosHalfTheta ) >= 1.0 ) {
- qm.w = qa.w;
- qm.x = qa.x;
- qm.y = qa.y;
- qm.z = qa.z;
- return qm;
- }
- var halfTheta = Math.acos( cosHalfTheta );
- var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
- if ( Math.abs( sinHalfTheta ) < 0.001 ) {
- qm.w = 0.5 * ( qa.w + qm.w );
- qm.x = 0.5 * ( qa.x + qm.x );
- qm.y = 0.5 * ( qa.y + qm.y );
- qm.z = 0.5 * ( qa.z + qm.z );
- return qm;
- }
- var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta;
- var ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
- qm.w = ( qa.w * ratioA + qm.w * ratioB );
- qm.x = ( qa.x * ratioA + qm.x * ratioB );
- qm.y = ( qa.y * ratioA + qm.y * ratioB );
- qm.z = ( qa.z * ratioA + qm.z * ratioB );
- return qm;
- }
|