SimplexNoise.js 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. ( function () {
  2. // Ported from Stefan Gustavson's java implementation
  3. // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  4. // Read Stefan's excellent paper for details on how this code works.
  5. //
  6. // Sean McCullough [email protected]
  7. //
  8. // Added 4D noise
  9. /**
  10. * You can pass in a random number generator object if you like.
  11. * It is assumed to have a random() method.
  12. */
  13. var SimplexNoise = function ( r ) {
  14. if ( r == undefined ) r = Math;
  15. this.grad3 = [[ 1, 1, 0 ], [ - 1, 1, 0 ], [ 1, - 1, 0 ], [ - 1, - 1, 0 ], [ 1, 0, 1 ], [ - 1, 0, 1 ], [ 1, 0, - 1 ], [ - 1, 0, - 1 ], [ 0, 1, 1 ], [ 0, - 1, 1 ], [ 0, 1, - 1 ], [ 0, - 1, - 1 ]];
  16. this.grad4 = [[ 0, 1, 1, 1 ], [ 0, 1, 1, - 1 ], [ 0, 1, - 1, 1 ], [ 0, 1, - 1, - 1 ], [ 0, - 1, 1, 1 ], [ 0, - 1, 1, - 1 ], [ 0, - 1, - 1, 1 ], [ 0, - 1, - 1, - 1 ], [ 1, 0, 1, 1 ], [ 1, 0, 1, - 1 ], [ 1, 0, - 1, 1 ], [ 1, 0, - 1, - 1 ], [ - 1, 0, 1, 1 ], [ - 1, 0, 1, - 1 ], [ - 1, 0, - 1, 1 ], [ - 1, 0, - 1, - 1 ], [ 1, 1, 0, 1 ], [ 1, 1, 0, - 1 ], [ 1, - 1, 0, 1 ], [ 1, - 1, 0, - 1 ], [ - 1, 1, 0, 1 ], [ - 1, 1, 0, - 1 ], [ - 1, - 1, 0, 1 ], [ - 1, - 1, 0, - 1 ], [ 1, 1, 1, 0 ], [ 1, 1, - 1, 0 ], [ 1, - 1, 1, 0 ], [ 1, - 1, - 1, 0 ], [ - 1, 1, 1, 0 ], [ - 1, 1, - 1, 0 ], [ - 1, - 1, 1, 0 ], [ - 1, - 1, - 1, 0 ]];
  17. this.p = [];
  18. for ( var i = 0; i < 256; i ++ ) {
  19. this.p[ i ] = Math.floor( r.random() * 256 );
  20. } // To remove the need for index wrapping, double the permutation table length
  21. this.perm = [];
  22. for ( var i = 0; i < 512; i ++ ) {
  23. this.perm[ i ] = this.p[ i & 255 ];
  24. } // A lookup table to traverse the simplex around a given point in 4D.
  25. // Details can be found where this table is used, in the 4D noise method.
  26. this.simplex = [[ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 2, 3, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 3, 0 ], [ 0, 2, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 3, 2, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 0, 3 ], [ 0, 0, 0, 0 ], [ 1, 3, 0, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ], [ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 3, 1 ], [ 0, 0, 0, 0 ], [ 2, 1, 3, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ], [ 0, 0, 0, 0 ], [ 3, 1, 2, 0 ], [ 2, 1, 0, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 1, 0, 2 ], [ 0, 0, 0, 0 ], [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]];
  27. };
  28. SimplexNoise.prototype.dot = function ( g, x, y ) {
  29. return g[ 0 ] * x + g[ 1 ] * y;
  30. };
  31. SimplexNoise.prototype.dot3 = function ( g, x, y, z ) {
  32. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z;
  33. };
  34. SimplexNoise.prototype.dot4 = function ( g, x, y, z, w ) {
  35. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w;
  36. };
  37. SimplexNoise.prototype.noise = function ( xin, yin ) {
  38. var n0, n1, n2; // Noise contributions from the three corners
  39. // Skew the input space to determine which simplex cell we're in
  40. var F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 );
  41. var s = ( xin + yin ) * F2; // Hairy factor for 2D
  42. var i = Math.floor( xin + s );
  43. var j = Math.floor( yin + s );
  44. var G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0;
  45. var t = ( i + j ) * G2;
  46. var X0 = i - t; // Unskew the cell origin back to (x,y) space
  47. var Y0 = j - t;
  48. var x0 = xin - X0; // The x,y distances from the cell origin
  49. var y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle.
  50. // Determine which simplex we are in.
  51. var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
  52. if ( x0 > y0 ) {
  53. i1 = 1;
  54. j1 = 0; // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  55. } else {
  56. i1 = 0;
  57. j1 = 1;
  58. } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  59. // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  60. // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  61. // c = (3-sqrt(3))/6
  62. var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  63. var y1 = y0 - j1 + G2;
  64. var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
  65. var y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners
  66. var ii = i & 255;
  67. var jj = j & 255;
  68. var gi0 = this.perm[ ii + this.perm[ jj ] ] % 12;
  69. var gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ] ] % 12;
  70. var gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ] ] % 12; // Calculate the contribution from the three corners
  71. var t0 = 0.5 - x0 * x0 - y0 * y0;
  72. if ( t0 < 0 ) n0 = 0.0; else {
  73. t0 *= t0;
  74. n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient
  75. }
  76. var t1 = 0.5 - x1 * x1 - y1 * y1;
  77. if ( t1 < 0 ) n1 = 0.0; else {
  78. t1 *= t1;
  79. n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 );
  80. }
  81. var t2 = 0.5 - x2 * x2 - y2 * y2;
  82. if ( t2 < 0 ) n2 = 0.0; else {
  83. t2 *= t2;
  84. n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 );
  85. } // Add contributions from each corner to get the final noise value.
  86. // The result is scaled to return values in the interval [-1,1].
  87. return 70.0 * ( n0 + n1 + n2 );
  88. }; // 3D simplex noise
  89. SimplexNoise.prototype.noise3d = function ( xin, yin, zin ) {
  90. var n0, n1, n2, n3; // Noise contributions from the four corners
  91. // Skew the input space to determine which simplex cell we're in
  92. var F3 = 1.0 / 3.0;
  93. var s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D
  94. var i = Math.floor( xin + s );
  95. var j = Math.floor( yin + s );
  96. var k = Math.floor( zin + s );
  97. var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
  98. var t = ( i + j + k ) * G3;
  99. var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
  100. var Y0 = j - t;
  101. var Z0 = k - t;
  102. var x0 = xin - X0; // The x,y,z distances from the cell origin
  103. var y0 = yin - Y0;
  104. var z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  105. // Determine which simplex we are in.
  106. var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
  107. var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
  108. if ( x0 >= y0 ) {
  109. if ( y0 >= z0 ) {
  110. i1 = 1;
  111. j1 = 0;
  112. k1 = 0;
  113. i2 = 1;
  114. j2 = 1;
  115. k2 = 0; // X Y Z order
  116. } else if ( x0 >= z0 ) {
  117. i1 = 1;
  118. j1 = 0;
  119. k1 = 0;
  120. i2 = 1;
  121. j2 = 0;
  122. k2 = 1; // X Z Y order
  123. } else {
  124. i1 = 0;
  125. j1 = 0;
  126. k1 = 1;
  127. i2 = 1;
  128. j2 = 0;
  129. k2 = 1;
  130. } // Z X Y order
  131. } else {
  132. // x0<y0
  133. if ( y0 < z0 ) {
  134. i1 = 0;
  135. j1 = 0;
  136. k1 = 1;
  137. i2 = 0;
  138. j2 = 1;
  139. k2 = 1; // Z Y X order
  140. } else if ( x0 < z0 ) {
  141. i1 = 0;
  142. j1 = 1;
  143. k1 = 0;
  144. i2 = 0;
  145. j2 = 1;
  146. k2 = 1; // Y Z X order
  147. } else {
  148. i1 = 0;
  149. j1 = 1;
  150. k1 = 0;
  151. i2 = 1;
  152. j2 = 1;
  153. k2 = 0;
  154. } // Y X Z order
  155. } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  156. // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  157. // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  158. // c = 1/6.
  159. var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  160. var y1 = y0 - j1 + G3;
  161. var z1 = z0 - k1 + G3;
  162. var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
  163. var y2 = y0 - j2 + 2.0 * G3;
  164. var z2 = z0 - k2 + 2.0 * G3;
  165. var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
  166. var y3 = y0 - 1.0 + 3.0 * G3;
  167. var z3 = z0 - 1.0 + 3.0 * G3; // Work out the hashed gradient indices of the four simplex corners
  168. var ii = i & 255;
  169. var jj = j & 255;
  170. var kk = k & 255;
  171. var gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ] ] ] % 12;
  172. var gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ] ] ] % 12;
  173. var gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ] ] ] % 12;
  174. var gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ] ] ] % 12; // Calculate the contribution from the four corners
  175. var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
  176. if ( t0 < 0 ) n0 = 0.0; else {
  177. t0 *= t0;
  178. n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 );
  179. }
  180. var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
  181. if ( t1 < 0 ) n1 = 0.0; else {
  182. t1 *= t1;
  183. n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 );
  184. }
  185. var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
  186. if ( t2 < 0 ) n2 = 0.0; else {
  187. t2 *= t2;
  188. n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 );
  189. }
  190. var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
  191. if ( t3 < 0 ) n3 = 0.0; else {
  192. t3 *= t3;
  193. n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 );
  194. } // Add contributions from each corner to get the final noise value.
  195. // The result is scaled to stay just inside [-1,1]
  196. return 32.0 * ( n0 + n1 + n2 + n3 );
  197. }; // 4D simplex noise
  198. SimplexNoise.prototype.noise4d = function ( x, y, z, w ) {
  199. // For faster and easier lookups
  200. var grad4 = this.grad4;
  201. var simplex = this.simplex;
  202. var perm = this.perm; // The skewing and unskewing factors are hairy again for the 4D case
  203. var F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0;
  204. var G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0;
  205. var n0, n1, n2, n3, n4; // Noise contributions from the five corners
  206. // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
  207. var s = ( x + y + z + w ) * F4; // Factor for 4D skewing
  208. var i = Math.floor( x + s );
  209. var j = Math.floor( y + s );
  210. var k = Math.floor( z + s );
  211. var l = Math.floor( w + s );
  212. var t = ( i + j + k + l ) * G4; // Factor for 4D unskewing
  213. var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
  214. var Y0 = j - t;
  215. var Z0 = k - t;
  216. var W0 = l - t;
  217. var x0 = x - X0; // The x,y,z,w distances from the cell origin
  218. var y0 = y - Y0;
  219. var z0 = z - Z0;
  220. var w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe.
  221. // To find out which of the 24 possible simplices we're in, we need to
  222. // determine the magnitude ordering of x0, y0, z0 and w0.
  223. // The method below is a good way of finding the ordering of x,y,z,w and
  224. // then find the correct traversal order for the simplex we’re in.
  225. // First, six pair-wise comparisons are performed between each possible pair
  226. // of the four coordinates, and the results are used to add up binary bits
  227. // for an integer index.
  228. var c1 = x0 > y0 ? 32 : 0;
  229. var c2 = x0 > z0 ? 16 : 0;
  230. var c3 = y0 > z0 ? 8 : 0;
  231. var c4 = x0 > w0 ? 4 : 0;
  232. var c5 = y0 > w0 ? 2 : 0;
  233. var c6 = z0 > w0 ? 1 : 0;
  234. var c = c1 + c2 + c3 + c4 + c5 + c6;
  235. var i1, j1, k1, l1; // The integer offsets for the second simplex corner
  236. var i2, j2, k2, l2; // The integer offsets for the third simplex corner
  237. var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
  238. // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
  239. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
  240. // impossible. Only the 24 indices which have non-zero entries make any sense.
  241. // We use a thresholding to set the coordinates in turn from the largest magnitude.
  242. // The number 3 in the "simplex" array is at the position of the largest coordinate.
  243. i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0;
  244. j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0;
  245. k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0;
  246. l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate.
  247. i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0;
  248. j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0;
  249. k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0;
  250. l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate.
  251. i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0;
  252. j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0;
  253. k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0;
  254. l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up.
  255. var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
  256. var y1 = y0 - j1 + G4;
  257. var z1 = z0 - k1 + G4;
  258. var w1 = w0 - l1 + G4;
  259. var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
  260. var y2 = y0 - j2 + 2.0 * G4;
  261. var z2 = z0 - k2 + 2.0 * G4;
  262. var w2 = w0 - l2 + 2.0 * G4;
  263. var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
  264. var y3 = y0 - j3 + 3.0 * G4;
  265. var z3 = z0 - k3 + 3.0 * G4;
  266. var w3 = w0 - l3 + 3.0 * G4;
  267. var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
  268. var y4 = y0 - 1.0 + 4.0 * G4;
  269. var z4 = z0 - 1.0 + 4.0 * G4;
  270. var w4 = w0 - 1.0 + 4.0 * G4; // Work out the hashed gradient indices of the five simplex corners
  271. var ii = i & 255;
  272. var jj = j & 255;
  273. var kk = k & 255;
  274. var ll = l & 255;
  275. var gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ] ] ] ] % 32;
  276. var gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ] ] ] ] % 32;
  277. var gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ] ] ] ] % 32;
  278. var gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ] ] ] ] % 32;
  279. var gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ] ] ] ] % 32; // Calculate the contribution from the five corners
  280. var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
  281. if ( t0 < 0 ) n0 = 0.0; else {
  282. t0 *= t0;
  283. n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 );
  284. }
  285. var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
  286. if ( t1 < 0 ) n1 = 0.0; else {
  287. t1 *= t1;
  288. n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 );
  289. }
  290. var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
  291. if ( t2 < 0 ) n2 = 0.0; else {
  292. t2 *= t2;
  293. n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 );
  294. }
  295. var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
  296. if ( t3 < 0 ) n3 = 0.0; else {
  297. t3 *= t3;
  298. n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 );
  299. }
  300. var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
  301. if ( t4 < 0 ) n4 = 0.0; else {
  302. t4 *= t4;
  303. n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 );
  304. } // Sum up and scale the result to cover the range [-1,1]
  305. return 27.0 * ( n0 + n1 + n2 + n3 + n4 );
  306. };
  307. THREE.SimplexNoise = SimplexNoise;
  308. } )();