SSAARenderPass.js 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. ( function () {
  2. /**
  3. *
  4. * Supersample Anti-Aliasing Render THREE.Pass
  5. *
  6. * This manual approach to SSAA re-renders the scene ones for each sample with camera jitter and accumulates the results.
  7. *
  8. * References: https://en.wikipedia.org/wiki/Supersampling
  9. *
  10. */
  11. var SSAARenderPass = function ( scene, camera, clearColor, clearAlpha ) {
  12. THREE.Pass.call( this );
  13. this.scene = scene;
  14. this.camera = camera;
  15. this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16.
  16. this.unbiased = true; // as we need to clear the buffer in this pass, clearColor must be set to something, defaults to black.
  17. this.clearColor = clearColor !== undefined ? clearColor : 0x000000;
  18. this.clearAlpha = clearAlpha !== undefined ? clearAlpha : 0;
  19. this._oldClearColor = new THREE.Color();
  20. if ( THREE.CopyShader === undefined ) console.error( 'THREE.SSAARenderPass relies on THREE.CopyShader' );
  21. var copyShader = THREE.CopyShader;
  22. this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
  23. this.copyMaterial = new THREE.ShaderMaterial( {
  24. uniforms: this.copyUniforms,
  25. vertexShader: copyShader.vertexShader,
  26. fragmentShader: copyShader.fragmentShader,
  27. premultipliedAlpha: true,
  28. transparent: true,
  29. blending: THREE.AdditiveBlending,
  30. depthTest: false,
  31. depthWrite: false
  32. } );
  33. this.fsQuad = new THREE.Pass.FullScreenQuad( this.copyMaterial );
  34. };
  35. SSAARenderPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
  36. constructor: SSAARenderPass,
  37. dispose: function () {
  38. if ( this.sampleRenderTarget ) {
  39. this.sampleRenderTarget.dispose();
  40. this.sampleRenderTarget = null;
  41. }
  42. },
  43. setSize: function ( width, height ) {
  44. if ( this.sampleRenderTarget ) this.sampleRenderTarget.setSize( width, height );
  45. },
  46. render: function ( renderer, writeBuffer, readBuffer ) {
  47. if ( ! this.sampleRenderTarget ) {
  48. this.sampleRenderTarget = new THREE.WebGLRenderTarget( readBuffer.width, readBuffer.height, {
  49. minFilter: THREE.LinearFilter,
  50. magFilter: THREE.LinearFilter,
  51. format: THREE.RGBAFormat
  52. } );
  53. this.sampleRenderTarget.texture.name = 'SSAARenderPass.sample';
  54. }
  55. var jitterOffsets = SSAARenderPass.JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ];
  56. var autoClear = renderer.autoClear;
  57. renderer.autoClear = false;
  58. renderer.getClearColor( this._oldClearColor );
  59. var oldClearAlpha = renderer.getClearAlpha();
  60. var baseSampleWeight = 1.0 / jitterOffsets.length;
  61. var roundingRange = 1 / 32;
  62. this.copyUniforms[ 'tDiffuse' ].value = this.sampleRenderTarget.texture;
  63. var width = readBuffer.width,
  64. height = readBuffer.height; // render the scene multiple times, each slightly jitter offset from the last and accumulate the results.
  65. for ( var i = 0; i < jitterOffsets.length; i ++ ) {
  66. var jitterOffset = jitterOffsets[ i ];
  67. if ( this.camera.setViewOffset ) {
  68. this.camera.setViewOffset( width, height, jitterOffset[ 0 ] * 0.0625, jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16
  69. width, height );
  70. }
  71. var sampleWeight = baseSampleWeight;
  72. if ( this.unbiased ) {
  73. // the theory is that equal weights for each sample lead to an accumulation of rounding errors.
  74. // The following equation varies the sampleWeight per sample so that it is uniformly distributed
  75. // across a range of values whose rounding errors cancel each other out.
  76. var uniformCenteredDistribution = - 0.5 + ( i + 0.5 ) / jitterOffsets.length;
  77. sampleWeight += roundingRange * uniformCenteredDistribution;
  78. }
  79. this.copyUniforms[ 'opacity' ].value = sampleWeight;
  80. renderer.setClearColor( this.clearColor, this.clearAlpha );
  81. renderer.setRenderTarget( this.sampleRenderTarget );
  82. renderer.clear();
  83. renderer.render( this.scene, this.camera );
  84. renderer.setRenderTarget( this.renderToScreen ? null : writeBuffer );
  85. if ( i === 0 ) {
  86. renderer.setClearColor( 0x000000, 0.0 );
  87. renderer.clear();
  88. }
  89. this.fsQuad.render( renderer );
  90. }
  91. if ( this.camera.clearViewOffset ) this.camera.clearViewOffset();
  92. renderer.autoClear = autoClear;
  93. renderer.setClearColor( this._oldClearColor, oldClearAlpha );
  94. }
  95. } ); // These jitter vectors are specified in integers because it is easier.
  96. // I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5)
  97. // before being used, thus these integers need to be scaled by 1/16.
  98. //
  99. // Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
  100. SSAARenderPass.JitterVectors = [[[ 0, 0 ]], [[ 4, 4 ], [ - 4, - 4 ]], [[ - 2, - 6 ], [ 6, - 2 ], [ - 6, 2 ], [ 2, 6 ]], [[ 1, - 3 ], [ - 1, 3 ], [ 5, 1 ], [ - 3, - 5 ], [ - 5, 5 ], [ - 7, - 1 ], [ 3, 7 ], [ 7, - 7 ]], [[ 1, 1 ], [ - 1, - 3 ], [ - 3, 2 ], [ 4, - 1 ], [ - 5, - 2 ], [ 2, 5 ], [ 5, 3 ], [ 3, - 5 ], [ - 2, 6 ], [ 0, - 7 ], [ - 4, - 6 ], [ - 6, 4 ], [ - 8, 0 ], [ 7, - 4 ], [ 6, 7 ], [ - 7, - 8 ]], [[ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ], [ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ], [ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ], [ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ], [ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ], [ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ], [ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ], [ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ]]];
  101. THREE.SSAARenderPass = SSAARenderPass;
  102. } )();