EXRLoader.js 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. * @author ScieCode / http://github.com/sciecode
  4. *
  5. * OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
  6. * Supports reading as UnsignedByte, HalfFloat and Float type data texture.
  7. *
  8. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  9. * implementation, so I have preserved their copyright notices.
  10. */
  11. // /*
  12. // Copyright (c) 2014 - 2017, Syoyo Fujita
  13. // All rights reserved.
  14. // Redistribution and use in source and binary forms, with or without
  15. // modification, are permitted provided that the following conditions are met:
  16. // * Redistributions of source code must retain the above copyright
  17. // notice, this list of conditions and the following disclaimer.
  18. // * Redistributions in binary form must reproduce the above copyright
  19. // notice, this list of conditions and the following disclaimer in the
  20. // documentation and/or other materials provided with the distribution.
  21. // * Neither the name of the Syoyo Fujita nor the
  22. // names of its contributors may be used to endorse or promote products
  23. // derived from this software without specific prior written permission.
  24. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  25. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  26. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  27. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  28. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  29. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  30. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  31. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  32. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  33. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  34. // */
  35. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  36. // ///////////////////////////////////////////////////////////////////////////
  37. // //
  38. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  39. // // Digital Ltd. LLC
  40. // //
  41. // // All rights reserved.
  42. // //
  43. // // Redistribution and use in source and binary forms, with or without
  44. // // modification, are permitted provided that the following conditions are
  45. // // met:
  46. // // * Redistributions of source code must retain the above copyright
  47. // // notice, this list of conditions and the following disclaimer.
  48. // // * Redistributions in binary form must reproduce the above
  49. // // copyright notice, this list of conditions and the following disclaimer
  50. // // in the documentation and/or other materials provided with the
  51. // // distribution.
  52. // // * Neither the name of Industrial Light & Magic nor the names of
  53. // // its contributors may be used to endorse or promote products derived
  54. // // from this software without specific prior written permission.
  55. // //
  56. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  57. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  58. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  59. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  60. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  61. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  62. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  63. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  64. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  65. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  66. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  67. // //
  68. // ///////////////////////////////////////////////////////////////////////////
  69. // // End of OpenEXR license -------------------------------------------------
  70. THREE.EXRLoader = function ( manager ) {
  71. THREE.DataTextureLoader.call( this, manager );
  72. this.type = THREE.FloatType;
  73. };
  74. THREE.EXRLoader.prototype = Object.assign( Object.create( THREE.DataTextureLoader.prototype ), {
  75. constructor: THREE.EXRLoader,
  76. parse: function ( buffer ) {
  77. const USHORT_RANGE = ( 1 << 16 );
  78. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  79. const HUF_ENCBITS = 16; // literal (value) bit length
  80. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  81. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  82. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  83. const HUF_DECMASK = HUF_DECSIZE - 1;
  84. const SHORT_ZEROCODE_RUN = 59;
  85. const LONG_ZEROCODE_RUN = 63;
  86. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  87. const ULONG_SIZE = 8;
  88. const FLOAT32_SIZE = 4;
  89. const INT32_SIZE = 4;
  90. const INT16_SIZE = 2;
  91. const INT8_SIZE = 1;
  92. const STATIC_HUFFMAN = 0;
  93. const DEFLATE = 1;
  94. const UNKNOWN = 0;
  95. const LOSSY_DCT = 1;
  96. const RLE = 2;
  97. const logBase = Math.pow( 2.7182818, 2.2 );
  98. function frexp( value ) {
  99. if ( value === 0 ) return [ value, 0 ];
  100. var data = new DataView( new ArrayBuffer( 8 ) );
  101. data.setFloat64( 0, value );
  102. var bits = ( data.getUint32( 0 ) >>> 20 ) & 0x7FF;
  103. if ( bits === 0 ) { // denormal
  104. data.setFloat64( 0, value * Math.pow( 2, 64 ) ); // exp + 64
  105. bits = ( ( data.getUint32( 0 ) >>> 20 ) & 0x7FF ) - 64;
  106. }
  107. var exponent = bits - 1022;
  108. var mantissa = ldexp( value, - exponent );
  109. return [ mantissa, exponent ];
  110. }
  111. function ldexp( mantissa, exponent ) {
  112. var steps = Math.min( 3, Math.ceil( Math.abs( exponent ) / 1023 ) );
  113. var result = mantissa;
  114. for ( var i = 0; i < steps; i ++ )
  115. result *= Math.pow( 2, Math.floor( ( exponent + i ) / steps ) );
  116. return result;
  117. }
  118. function reverseLutFromBitmap( bitmap, lut ) {
  119. var k = 0;
  120. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  121. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  122. lut[ k ++ ] = i;
  123. }
  124. }
  125. var n = k - 1;
  126. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  127. return n;
  128. }
  129. function hufClearDecTable( hdec ) {
  130. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  131. hdec[ i ] = {};
  132. hdec[ i ].len = 0;
  133. hdec[ i ].lit = 0;
  134. hdec[ i ].p = null;
  135. }
  136. }
  137. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  138. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  139. while ( lc < nBits ) {
  140. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  141. lc += 8;
  142. }
  143. lc -= nBits;
  144. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  145. getBitsReturn.c = c;
  146. getBitsReturn.lc = lc;
  147. }
  148. const hufTableBuffer = new Array( 59 );
  149. function hufCanonicalCodeTable( hcode ) {
  150. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  151. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  152. var c = 0;
  153. for ( var i = 58; i > 0; -- i ) {
  154. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  155. hufTableBuffer[ i ] = c;
  156. c = nc;
  157. }
  158. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  159. var l = hcode[ i ];
  160. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  161. }
  162. }
  163. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  164. var p = inOffset;
  165. var c = 0;
  166. var lc = 0;
  167. for ( ; im <= iM; im ++ ) {
  168. if ( p.value - inOffset.value > ni ) return false;
  169. getBits( 6, c, lc, uInt8Array, p );
  170. var l = getBitsReturn.l;
  171. c = getBitsReturn.c;
  172. lc = getBitsReturn.lc;
  173. hcode[ im ] = l;
  174. if ( l == LONG_ZEROCODE_RUN ) {
  175. if ( p.value - inOffset.value > ni ) {
  176. throw 'Something wrong with hufUnpackEncTable';
  177. }
  178. getBits( 8, c, lc, uInt8Array, p );
  179. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  180. c = getBitsReturn.c;
  181. lc = getBitsReturn.lc;
  182. if ( im + zerun > iM + 1 ) {
  183. throw 'Something wrong with hufUnpackEncTable';
  184. }
  185. while ( zerun -- ) hcode[ im ++ ] = 0;
  186. im --;
  187. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  188. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  189. if ( im + zerun > iM + 1 ) {
  190. throw 'Something wrong with hufUnpackEncTable';
  191. }
  192. while ( zerun -- ) hcode[ im ++ ] = 0;
  193. im --;
  194. }
  195. }
  196. hufCanonicalCodeTable( hcode );
  197. }
  198. function hufLength( code ) {
  199. return code & 63;
  200. }
  201. function hufCode( code ) {
  202. return code >> 6;
  203. }
  204. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  205. for ( ; im <= iM; im ++ ) {
  206. var c = hufCode( hcode[ im ] );
  207. var l = hufLength( hcode[ im ] );
  208. if ( c >> l ) {
  209. throw 'Invalid table entry';
  210. }
  211. if ( l > HUF_DECBITS ) {
  212. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  213. if ( pl.len ) {
  214. throw 'Invalid table entry';
  215. }
  216. pl.lit ++;
  217. if ( pl.p ) {
  218. var p = pl.p;
  219. pl.p = new Array( pl.lit );
  220. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  221. pl.p[ i ] = p[ i ];
  222. }
  223. } else {
  224. pl.p = new Array( 1 );
  225. }
  226. pl.p[ pl.lit - 1 ] = im;
  227. } else if ( l ) {
  228. var plOffset = 0;
  229. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  230. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  231. if ( pl.len || pl.p ) {
  232. throw 'Invalid table entry';
  233. }
  234. pl.len = l;
  235. pl.lit = im;
  236. plOffset ++;
  237. }
  238. }
  239. }
  240. return true;
  241. }
  242. const getCharReturn = { c: 0, lc: 0 };
  243. function getChar( c, lc, uInt8Array, inOffset ) {
  244. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  245. lc += 8;
  246. getCharReturn.c = c;
  247. getCharReturn.lc = lc;
  248. }
  249. const getCodeReturn = { c: 0, lc: 0 };
  250. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  251. if ( po == rlc ) {
  252. if ( lc < 8 ) {
  253. getChar( c, lc, uInt8Array, inOffset );
  254. c = getCharReturn.c;
  255. lc = getCharReturn.lc;
  256. }
  257. lc -= 8;
  258. var cs = ( c >> lc );
  259. var cs = new Uint8Array( [ cs ] )[ 0 ];
  260. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  261. return false;
  262. }
  263. var s = outBuffer[ outBufferOffset.value - 1 ];
  264. while ( cs -- > 0 ) {
  265. outBuffer[ outBufferOffset.value ++ ] = s;
  266. }
  267. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  268. outBuffer[ outBufferOffset.value ++ ] = po;
  269. } else {
  270. return false;
  271. }
  272. getCodeReturn.c = c;
  273. getCodeReturn.lc = lc;
  274. }
  275. function UInt16( value ) {
  276. return ( value & 0xFFFF );
  277. }
  278. function Int16( value ) {
  279. var ref = UInt16( value );
  280. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  281. }
  282. const wdec14Return = { a: 0, b: 0 };
  283. function wdec14( l, h ) {
  284. var ls = Int16( l );
  285. var hs = Int16( h );
  286. var hi = hs;
  287. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  288. var as = ai;
  289. var bs = ai - hi;
  290. wdec14Return.a = as;
  291. wdec14Return.b = bs;
  292. }
  293. function wav2Decode( buffer, j, nx, ox, ny, oy ) {
  294. var n = ( nx > ny ) ? ny : nx;
  295. var p = 1;
  296. var p2;
  297. while ( p <= n ) p <<= 1;
  298. p >>= 1;
  299. p2 = p;
  300. p >>= 1;
  301. while ( p >= 1 ) {
  302. var py = 0;
  303. var ey = py + oy * ( ny - p2 );
  304. var oy1 = oy * p;
  305. var oy2 = oy * p2;
  306. var ox1 = ox * p;
  307. var ox2 = ox * p2;
  308. var i00, i01, i10, i11;
  309. for ( ; py <= ey; py += oy2 ) {
  310. var px = py;
  311. var ex = py + ox * ( nx - p2 );
  312. for ( ; px <= ex; px += ox2 ) {
  313. var p01 = px + ox1;
  314. var p10 = px + oy1;
  315. var p11 = p10 + ox1;
  316. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  317. i00 = wdec14Return.a;
  318. i10 = wdec14Return.b;
  319. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  320. i01 = wdec14Return.a;
  321. i11 = wdec14Return.b;
  322. wdec14( i00, i01 );
  323. buffer[ px + j ] = wdec14Return.a;
  324. buffer[ p01 + j ] = wdec14Return.b;
  325. wdec14( i10, i11 );
  326. buffer[ p10 + j ] = wdec14Return.a;
  327. buffer[ p11 + j ] = wdec14Return.b;
  328. }
  329. if ( nx & p ) {
  330. var p10 = px + oy1;
  331. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  332. i00 = wdec14Return.a;
  333. buffer[ p10 + j ] = wdec14Return.b;
  334. buffer[ px + j ] = i00;
  335. }
  336. }
  337. if ( ny & p ) {
  338. var px = py;
  339. var ex = py + ox * ( nx - p2 );
  340. for ( ; px <= ex; px += ox2 ) {
  341. var p01 = px + ox1;
  342. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  343. i00 = wdec14Return.a;
  344. buffer[ p01 + j ] = wdec14Return.b;
  345. buffer[ px + j ] = i00;
  346. }
  347. }
  348. p2 = p;
  349. p >>= 1;
  350. }
  351. return py;
  352. }
  353. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  354. var c = 0;
  355. var lc = 0;
  356. var outBufferEndOffset = no;
  357. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  358. while ( inOffset.value < inOffsetEnd ) {
  359. getChar( c, lc, uInt8Array, inOffset );
  360. c = getCharReturn.c;
  361. lc = getCharReturn.lc;
  362. while ( lc >= HUF_DECBITS ) {
  363. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  364. var pl = decodingTable[ index ];
  365. if ( pl.len ) {
  366. lc -= pl.len;
  367. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  368. c = getCodeReturn.c;
  369. lc = getCodeReturn.lc;
  370. } else {
  371. if ( ! pl.p ) {
  372. throw 'hufDecode issues';
  373. }
  374. var j;
  375. for ( j = 0; j < pl.lit; j ++ ) {
  376. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  377. while ( lc < l && inOffset.value < inOffsetEnd ) {
  378. getChar( c, lc, uInt8Array, inOffset );
  379. c = getCharReturn.c;
  380. lc = getCharReturn.lc;
  381. }
  382. if ( lc >= l ) {
  383. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  384. lc -= l;
  385. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  386. c = getCodeReturn.c;
  387. lc = getCodeReturn.lc;
  388. break;
  389. }
  390. }
  391. }
  392. if ( j == pl.lit ) {
  393. throw 'hufDecode issues';
  394. }
  395. }
  396. }
  397. }
  398. var i = ( 8 - ni ) & 7;
  399. c >>= i;
  400. lc -= i;
  401. while ( lc > 0 ) {
  402. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  403. if ( pl.len ) {
  404. lc -= pl.len;
  405. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  406. c = getCodeReturn.c;
  407. lc = getCodeReturn.lc;
  408. } else {
  409. throw 'hufDecode issues';
  410. }
  411. }
  412. return true;
  413. }
  414. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  415. var outOffset = { value: 0 };
  416. var initialInOffset = inOffset.value;
  417. var im = parseUint32( inDataView, inOffset );
  418. var iM = parseUint32( inDataView, inOffset );
  419. inOffset.value += 4;
  420. var nBits = parseUint32( inDataView, inOffset );
  421. inOffset.value += 4;
  422. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  423. throw 'Something wrong with HUF_ENCSIZE';
  424. }
  425. var freq = new Array( HUF_ENCSIZE );
  426. var hdec = new Array( HUF_DECSIZE );
  427. hufClearDecTable( hdec );
  428. var ni = nCompressed - ( inOffset.value - initialInOffset );
  429. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  430. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  431. throw 'Something wrong with hufUncompress';
  432. }
  433. hufBuildDecTable( freq, im, iM, hdec );
  434. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  435. }
  436. function applyLut( lut, data, nData ) {
  437. for ( var i = 0; i < nData; ++ i ) {
  438. data[ i ] = lut[ data[ i ] ];
  439. }
  440. }
  441. function predictor( source ) {
  442. for ( var t = 1; t < source.length; t ++ ) {
  443. var d = source[ t - 1 ] + source[ t ] - 128;
  444. source[ t ] = d;
  445. }
  446. }
  447. function interleaveScalar( source, out ) {
  448. var t1 = 0;
  449. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  450. var s = 0;
  451. var stop = source.length - 1;
  452. while ( true ) {
  453. if ( s > stop ) break;
  454. out[ s ++ ] = source[ t1 ++ ];
  455. if ( s > stop ) break;
  456. out[ s ++ ] = source[ t2 ++ ];
  457. }
  458. }
  459. function decodeRunLength( source ) {
  460. var size = source.byteLength;
  461. var out = new Array();
  462. var p = 0;
  463. var reader = new DataView( source );
  464. while ( size > 0 ) {
  465. var l = reader.getInt8( p ++ );
  466. if ( l < 0 ) {
  467. var count = - l;
  468. size -= count + 1;
  469. for ( var i = 0; i < count; i ++ ) {
  470. out.push( reader.getUint8( p ++ ) );
  471. }
  472. } else {
  473. var count = l;
  474. size -= 2;
  475. var value = reader.getUint8( p ++ );
  476. for ( var i = 0; i < count + 1; i ++ ) {
  477. out.push( value );
  478. }
  479. }
  480. }
  481. return out;
  482. }
  483. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  484. var dataView = new DataView( outBuffer.buffer );
  485. var width = channelData[ cscSet.idx[ 0 ] ].width;
  486. var height = channelData[ cscSet.idx[ 0 ] ].height;
  487. var numComp = 3;
  488. var numFullBlocksX = Math.floor( width / 8.0 );
  489. var numBlocksX = Math.ceil( width / 8.0 );
  490. var numBlocksY = Math.ceil( height / 8.0 );
  491. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  492. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  493. var currAcComp = { value: 0 };
  494. var currDcComp = new Array( numComp );
  495. var dctData = new Array( numComp );
  496. var halfZigBlock = new Array( numComp );
  497. var rowBlock = new Array( numComp );
  498. var rowOffsets = new Array( numComp );
  499. for ( let comp = 0; comp < numComp; ++ comp ) {
  500. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  501. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  502. dctData[ comp ] = new Float32Array( 64 );
  503. halfZigBlock[ comp ] = new Uint16Array( 64 );
  504. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  505. }
  506. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  507. var maxY = 8;
  508. if ( blocky == numBlocksY - 1 )
  509. maxY = leftoverY;
  510. var maxX = 8;
  511. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  512. if ( blockx == numBlocksX - 1 )
  513. maxX = leftoverX;
  514. for ( let comp = 0; comp < numComp; ++ comp ) {
  515. halfZigBlock[ comp ].fill( 0 );
  516. // set block DC component
  517. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
  518. // set block AC components
  519. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  520. // UnZigZag block to float
  521. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  522. // decode float dct
  523. dctInverse( dctData[ comp ] );
  524. }
  525. if ( numComp == 3 ) {
  526. csc709Inverse( dctData );
  527. }
  528. for ( let comp = 0; comp < numComp; ++ comp ) {
  529. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  530. }
  531. } // blockx
  532. let offset = 0;
  533. for ( let comp = 0; comp < numComp; ++ comp ) {
  534. let type = channelData[ cscSet.idx[ comp ] ].type;
  535. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  536. offset = rowOffsets[ comp ][ y ];
  537. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  538. let src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  539. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  540. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  541. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  542. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  543. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  544. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  545. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  546. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  547. offset += 8 * INT16_SIZE * type;
  548. }
  549. }
  550. // handle partial X blocks
  551. if ( numFullBlocksX != numBlocksX ) {
  552. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  553. let offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  554. let src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  555. for ( let x = 0; x < maxX; ++ x ) {
  556. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  557. }
  558. }
  559. }
  560. } // comp
  561. } // blocky
  562. var halfRow = new Uint16Array( width );
  563. var dataView = new DataView( outBuffer.buffer );
  564. // convert channels back to float, if needed
  565. for ( var comp = 0; comp < numComp; ++ comp ) {
  566. channelData[ cscSet.idx[ comp ] ].decoded = true;
  567. var type = channelData[ cscSet.idx[ comp ] ].type;
  568. if ( channelData[ comp ].type != 2 ) continue;
  569. for ( var y = 0; y < height; ++ y ) {
  570. let offset = rowOffsets[ comp ][ y ];
  571. for ( var x = 0; x < width; ++ x ) {
  572. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  573. }
  574. for ( var x = 0; x < width; ++ x ) {
  575. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  576. }
  577. }
  578. }
  579. }
  580. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  581. var acValue;
  582. var dctComp = 1;
  583. while ( dctComp < 64 ) {
  584. acValue = acBuffer[ currAcComp.value ];
  585. if ( acValue == 0xff00 ) {
  586. dctComp = 64;
  587. } else if ( acValue >> 8 == 0xff ) {
  588. dctComp += acValue & 0xff;
  589. } else {
  590. halfZigBlock[ dctComp ] = acValue;
  591. dctComp ++;
  592. }
  593. currAcComp.value ++;
  594. }
  595. }
  596. function unZigZag( src, dst ) {
  597. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  598. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  599. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  600. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  601. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  602. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  603. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  604. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  605. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  606. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  607. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  608. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  609. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  610. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  611. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  612. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  613. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  614. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  615. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  616. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  617. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  618. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  619. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  620. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  621. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  622. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  623. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  624. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  625. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  626. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  627. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  628. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  629. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  630. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  631. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  632. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  633. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  634. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  635. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  636. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  637. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  638. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  639. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  640. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  641. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  642. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  643. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  644. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  645. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  646. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  647. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  648. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  649. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  650. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  651. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  652. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  653. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  654. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  655. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  656. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  657. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  658. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  659. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  660. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  661. }
  662. function dctInverse( data ) {
  663. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  664. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  665. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  666. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  667. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  668. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  669. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  670. var alpha = new Array( 4 );
  671. var beta = new Array( 4 );
  672. var theta = new Array( 4 );
  673. var gamma = new Array( 4 );
  674. for ( var row = 0; row < 8; ++ row ) {
  675. var rowPtr = row * 8;
  676. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  677. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  678. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  679. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  680. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  681. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  682. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  683. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  684. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  685. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  686. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  687. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  688. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  689. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  690. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  691. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  692. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  693. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  694. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  695. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  696. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  697. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  698. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  699. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  700. }
  701. for ( var column = 0; column < 8; ++ column ) {
  702. alpha[ 0 ] = c * data[ 16 + column ];
  703. alpha[ 1 ] = f * data[ 16 + column ];
  704. alpha[ 2 ] = c * data[ 48 + column ];
  705. alpha[ 3 ] = f * data[ 48 + column ];
  706. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  707. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  708. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  709. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  710. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  711. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  712. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  713. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  714. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  715. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  716. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  717. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  718. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  719. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  720. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  721. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  722. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  723. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  724. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  725. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  726. }
  727. }
  728. function csc709Inverse( data ) {
  729. for ( var i = 0; i < 64; ++ i ) {
  730. var y = data[ 0 ][ i ];
  731. var cb = data[ 1 ][ i ];
  732. var cr = data[ 2 ][ i ];
  733. data[ 0 ][ i ] = y + 1.5747 * cr;
  734. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  735. data[ 2 ][ i ] = y + 1.8556 * cb;
  736. }
  737. }
  738. function convertToHalf( src, dst, idx ) {
  739. for ( var i = 0; i < 64; ++ i ) {
  740. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  741. }
  742. }
  743. function toLinear( float ) {
  744. if ( float <= 1 ) {
  745. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  746. } else {
  747. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  748. }
  749. }
  750. function uncompressRAW( info ) {
  751. return new DataView( info.array.buffer, info.offset.value, info.size );
  752. }
  753. function uncompressRLE( info ) {
  754. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  755. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  756. var tmpBuffer = new Uint8Array( rawBuffer.length );
  757. predictor( rawBuffer ); // revert predictor
  758. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  759. return new DataView( tmpBuffer.buffer );
  760. }
  761. function uncompressZIP( info ) {
  762. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  763. if ( typeof Zlib === 'undefined' ) {
  764. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  765. }
  766. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  767. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  768. var tmpBuffer = new Uint8Array( rawBuffer.length );
  769. predictor( rawBuffer ); // revert predictor
  770. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  771. return new DataView( tmpBuffer.buffer );
  772. }
  773. function uncompressPIZ( info ) {
  774. var inDataView = info.viewer;
  775. var inOffset = { value: info.offset.value };
  776. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  777. var outBuffer = new Uint16Array( tmpBufSize );
  778. var bitmap = new Uint8Array( BITMAP_SIZE );
  779. // Setup channel info
  780. var outBufferEnd = 0;
  781. var pizChannelData = new Array( info.channels );
  782. for ( var i = 0; i < info.channels; i ++ ) {
  783. pizChannelData[ i ] = {};
  784. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  785. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  786. pizChannelData[ i ][ 'nx' ] = info.width;
  787. pizChannelData[ i ][ 'ny' ] = info.lines;
  788. pizChannelData[ i ][ 'size' ] = info.type;
  789. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  790. }
  791. // Read range compression data
  792. var minNonZero = parseUint16( inDataView, inOffset );
  793. var maxNonZero = parseUint16( inDataView, inOffset );
  794. if ( maxNonZero >= BITMAP_SIZE ) {
  795. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  796. }
  797. if ( minNonZero <= maxNonZero ) {
  798. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  799. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  800. }
  801. }
  802. // Reverse LUT
  803. var lut = new Uint16Array( USHORT_RANGE );
  804. reverseLutFromBitmap( bitmap, lut );
  805. var length = parseUint32( inDataView, inOffset );
  806. // Huffman decoding
  807. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  808. // Wavelet decoding
  809. for ( var i = 0; i < info.channels; ++ i ) {
  810. var cd = pizChannelData[ i ];
  811. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  812. wav2Decode(
  813. outBuffer,
  814. cd.start + j,
  815. cd.nx,
  816. cd.size,
  817. cd.ny,
  818. cd.nx * cd.size
  819. );
  820. }
  821. }
  822. // Expand the pixel data to their original range
  823. applyLut( lut, outBuffer, outBufferEnd );
  824. // Rearrange the pixel data into the format expected by the caller.
  825. var tmpOffset = 0;
  826. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  827. for ( var y = 0; y < info.lines; y ++ ) {
  828. for ( var c = 0; c < info.channels; c ++ ) {
  829. var cd = pizChannelData[ c ];
  830. var n = cd.nx * cd.size;
  831. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  832. tmpBuffer.set( cp, tmpOffset );
  833. tmpOffset += n * INT16_SIZE;
  834. cd.end += n;
  835. }
  836. }
  837. return new DataView( tmpBuffer.buffer );
  838. }
  839. function uncompressDWA( info ) {
  840. var inDataView = info.viewer;
  841. var inOffset = { value: info.offset.value };
  842. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  843. // Read compression header information
  844. var dwaHeader = {
  845. version: parseInt64( inDataView, inOffset ),
  846. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  847. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  848. acCompressedSize: parseInt64( inDataView, inOffset ),
  849. dcCompressedSize: parseInt64( inDataView, inOffset ),
  850. rleCompressedSize: parseInt64( inDataView, inOffset ),
  851. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  852. rleRawSize: parseInt64( inDataView, inOffset ),
  853. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  854. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  855. acCompression: parseInt64( inDataView, inOffset )
  856. };
  857. if ( dwaHeader.version < 2 )
  858. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  859. // Read channel ruleset information
  860. var channelRules = new Array();
  861. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  862. while ( ruleSize > 0 ) {
  863. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  864. var value = parseUint8( inDataView, inOffset );
  865. var compression = ( value >> 2 ) & 3;
  866. var csc = ( value >> 4 ) - 1;
  867. var index = new Int8Array( [ csc ] )[ 0 ];
  868. var type = parseUint8( inDataView, inOffset );
  869. channelRules.push( {
  870. name: name,
  871. index: index,
  872. type: type,
  873. compression: compression,
  874. } );
  875. ruleSize -= name.length + 3;
  876. }
  877. // Classify channels
  878. var channels = EXRHeader.channels;
  879. var channelData = new Array( info.channels );
  880. for ( var i = 0; i < info.channels; ++ i ) {
  881. var cd = channelData[ i ] = {};
  882. var channel = channels[ i ];
  883. cd.name = channel.name;
  884. cd.compression = UNKNOWN;
  885. cd.decoded = false;
  886. cd.type = channel.pixelType;
  887. cd.pLinear = channel.pLinear;
  888. cd.width = info.width;
  889. cd.height = info.lines;
  890. }
  891. var cscSet = {
  892. idx: new Array( 3 )
  893. };
  894. for ( var offset = 0; offset < info.channels; ++ offset ) {
  895. var cd = channelData[ offset ];
  896. for ( var i = 0; i < channelRules.length; ++ i ) {
  897. var rule = channelRules[ i ];
  898. if ( cd.name == rule.name ) {
  899. cd.compression = rule.compression;
  900. if ( rule.index >= 0 ) {
  901. cscSet.idx[ rule.index ] = offset;
  902. }
  903. cd.offset = offset;
  904. }
  905. }
  906. }
  907. // Read DCT - AC component data
  908. if ( dwaHeader.acCompressedSize > 0 ) {
  909. switch ( dwaHeader.acCompression ) {
  910. case STATIC_HUFFMAN:
  911. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  912. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  913. break;
  914. case DEFLATE:
  915. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  916. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  917. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  918. inOffset.value += dwaHeader.totalAcUncompressedCount;
  919. break;
  920. }
  921. }
  922. // Read DCT - DC component data
  923. if ( dwaHeader.dcCompressedSize > 0 ) {
  924. var zlibInfo = {
  925. array: info.array,
  926. offset: inOffset,
  927. size: dwaHeader.dcCompressedSize
  928. };
  929. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  930. inOffset.value += dwaHeader.dcCompressedSize;
  931. }
  932. // Read RLE compressed data
  933. if ( dwaHeader.rleRawSize > 0 ) {
  934. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  935. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  936. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  937. inOffset.value += dwaHeader.rleCompressedSize;
  938. }
  939. // Prepare outbuffer data offset
  940. var outBufferEnd = 0;
  941. var rowOffsets = new Array( channelData.length );
  942. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  943. rowOffsets[ i ] = new Array();
  944. }
  945. for ( var y = 0; y < info.lines; ++ y ) {
  946. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  947. rowOffsets[ chan ].push( outBufferEnd );
  948. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  949. }
  950. }
  951. // Lossy DCT decode RGB channels
  952. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  953. // Decode other channels
  954. for ( var i = 0; i < channelData.length; ++ i ) {
  955. var cd = channelData[ i ];
  956. if ( cd.decoded ) continue;
  957. switch ( cd.compression ) {
  958. case RLE:
  959. var row = 0;
  960. var rleOffset = 0;
  961. for ( var y = 0; y < info.lines; ++ y ) {
  962. var rowOffsetBytes = rowOffsets[ i ][ row ];
  963. for ( var x = 0; x < cd.width; ++ x ) {
  964. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  965. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  966. }
  967. rleOffset ++;
  968. }
  969. row ++;
  970. }
  971. break;
  972. case LOSSY_DCT: // skip
  973. default:
  974. throw 'EXRLoader.parse: unsupported channel compression';
  975. }
  976. }
  977. return new DataView( outBuffer.buffer );
  978. }
  979. function parseNullTerminatedString( buffer, offset ) {
  980. var uintBuffer = new Uint8Array( buffer );
  981. var endOffset = 0;
  982. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  983. endOffset += 1;
  984. }
  985. var stringValue = new TextDecoder().decode(
  986. uintBuffer.slice( offset.value, offset.value + endOffset )
  987. );
  988. offset.value = offset.value + endOffset + 1;
  989. return stringValue;
  990. }
  991. function parseFixedLengthString( buffer, offset, size ) {
  992. var stringValue = new TextDecoder().decode(
  993. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  994. );
  995. offset.value = offset.value + size;
  996. return stringValue;
  997. }
  998. function parseUlong( dataView, offset ) {
  999. var uLong = dataView.getUint32( 0, true );
  1000. offset.value = offset.value + ULONG_SIZE;
  1001. return uLong;
  1002. }
  1003. function parseUint32( dataView, offset ) {
  1004. var Uint32 = dataView.getUint32( offset.value, true );
  1005. offset.value = offset.value + INT32_SIZE;
  1006. return Uint32;
  1007. }
  1008. function parseUint8Array( uInt8Array, offset ) {
  1009. var Uint8 = uInt8Array[ offset.value ];
  1010. offset.value = offset.value + INT8_SIZE;
  1011. return Uint8;
  1012. }
  1013. function parseUint8( dataView, offset ) {
  1014. var Uint8 = dataView.getUint8( offset.value );
  1015. offset.value = offset.value + INT8_SIZE;
  1016. return Uint8;
  1017. }
  1018. function parseInt64( dataView, offset ) {
  1019. var int = Number( dataView.getBigInt64( offset.value, true ) );
  1020. offset.value += ULONG_SIZE;
  1021. return int;
  1022. }
  1023. function parseFloat32( dataView, offset ) {
  1024. var float = dataView.getFloat32( offset.value, true );
  1025. offset.value += FLOAT32_SIZE;
  1026. return float;
  1027. }
  1028. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1029. function decodeFloat16( binary ) {
  1030. var exponent = ( binary & 0x7C00 ) >> 10,
  1031. fraction = binary & 0x03FF;
  1032. return ( binary >> 15 ? - 1 : 1 ) * (
  1033. exponent ?
  1034. (
  1035. exponent === 0x1F ?
  1036. fraction ? NaN : Infinity :
  1037. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1038. ) :
  1039. 6.103515625e-5 * ( fraction / 0x400 )
  1040. );
  1041. }
  1042. var encodeFloat16 = ( function () {
  1043. // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
  1044. var floatView = new Float32Array( 1 );
  1045. var int32View = new Int32Array( floatView.buffer );
  1046. /* This method is faster than the OpenEXR implementation (very often
  1047. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  1048. * by James Tursa?s half-precision code. */
  1049. return function toHalf( val ) {
  1050. floatView[ 0 ] = val;
  1051. var x = int32View[ 0 ];
  1052. var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
  1053. var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
  1054. var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
  1055. /* If zero, or denormal, or exponent underflows too much for a denormal
  1056. * half, return signed zero. */
  1057. if ( e < 103 ) return bits;
  1058. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  1059. if ( e > 142 ) {
  1060. bits |= 0x7c00;
  1061. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  1062. * not Inf, so make sure we set one mantissa bit too. */
  1063. bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
  1064. return bits;
  1065. }
  1066. /* If exponent underflows but not too much, return a denormal */
  1067. if ( e < 113 ) {
  1068. m |= 0x0800;
  1069. /* Extra rounding may overflow and set mantissa to 0 and exponent
  1070. * to 1, which is OK. */
  1071. bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
  1072. return bits;
  1073. }
  1074. bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
  1075. /* Extra rounding. An overflow will set mantissa to 0 and increment
  1076. * the exponent, which is OK. */
  1077. bits += m & 1;
  1078. return bits;
  1079. };
  1080. } )();
  1081. function parseUint16( dataView, offset ) {
  1082. var Uint16 = dataView.getUint16( offset.value, true );
  1083. offset.value += INT16_SIZE;
  1084. return Uint16;
  1085. }
  1086. function parseFloat16( buffer, offset ) {
  1087. return decodeFloat16( parseUint16( buffer, offset ) );
  1088. }
  1089. function parseChlist( dataView, buffer, offset, size ) {
  1090. var startOffset = offset.value;
  1091. var channels = [];
  1092. while ( offset.value < ( startOffset + size - 1 ) ) {
  1093. var name = parseNullTerminatedString( buffer, offset );
  1094. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  1095. var pLinear = parseUint8( dataView, offset );
  1096. offset.value += 3; // reserved, three chars
  1097. var xSampling = parseUint32( dataView, offset );
  1098. var ySampling = parseUint32( dataView, offset );
  1099. channels.push( {
  1100. name: name,
  1101. pixelType: pixelType,
  1102. pLinear: pLinear,
  1103. xSampling: xSampling,
  1104. ySampling: ySampling
  1105. } );
  1106. }
  1107. offset.value += 1;
  1108. return channels;
  1109. }
  1110. function parseChromaticities( dataView, offset ) {
  1111. var redX = parseFloat32( dataView, offset );
  1112. var redY = parseFloat32( dataView, offset );
  1113. var greenX = parseFloat32( dataView, offset );
  1114. var greenY = parseFloat32( dataView, offset );
  1115. var blueX = parseFloat32( dataView, offset );
  1116. var blueY = parseFloat32( dataView, offset );
  1117. var whiteX = parseFloat32( dataView, offset );
  1118. var whiteY = parseFloat32( dataView, offset );
  1119. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1120. }
  1121. function parseCompression( dataView, offset ) {
  1122. var compressionCodes = [
  1123. 'NO_COMPRESSION',
  1124. 'RLE_COMPRESSION',
  1125. 'ZIPS_COMPRESSION',
  1126. 'ZIP_COMPRESSION',
  1127. 'PIZ_COMPRESSION',
  1128. 'PXR24_COMPRESSION',
  1129. 'B44_COMPRESSION',
  1130. 'B44A_COMPRESSION',
  1131. 'DWAA_COMPRESSION',
  1132. 'DWAB_COMPRESSION'
  1133. ];
  1134. var compression = parseUint8( dataView, offset );
  1135. return compressionCodes[ compression ];
  1136. }
  1137. function parseBox2i( dataView, offset ) {
  1138. var xMin = parseUint32( dataView, offset );
  1139. var yMin = parseUint32( dataView, offset );
  1140. var xMax = parseUint32( dataView, offset );
  1141. var yMax = parseUint32( dataView, offset );
  1142. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1143. }
  1144. function parseLineOrder( dataView, offset ) {
  1145. var lineOrders = [
  1146. 'INCREASING_Y'
  1147. ];
  1148. var lineOrder = parseUint8( dataView, offset );
  1149. return lineOrders[ lineOrder ];
  1150. }
  1151. function parseV2f( dataView, offset ) {
  1152. var x = parseFloat32( dataView, offset );
  1153. var y = parseFloat32( dataView, offset );
  1154. return [ x, y ];
  1155. }
  1156. function parseValue( dataView, buffer, offset, type, size ) {
  1157. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1158. return parseFixedLengthString( buffer, offset, size );
  1159. } else if ( type === 'chlist' ) {
  1160. return parseChlist( dataView, buffer, offset, size );
  1161. } else if ( type === 'chromaticities' ) {
  1162. return parseChromaticities( dataView, offset );
  1163. } else if ( type === 'compression' ) {
  1164. return parseCompression( dataView, offset );
  1165. } else if ( type === 'box2i' ) {
  1166. return parseBox2i( dataView, offset );
  1167. } else if ( type === 'lineOrder' ) {
  1168. return parseLineOrder( dataView, offset );
  1169. } else if ( type === 'float' ) {
  1170. return parseFloat32( dataView, offset );
  1171. } else if ( type === 'v2f' ) {
  1172. return parseV2f( dataView, offset );
  1173. } else if ( type === 'int' ) {
  1174. return parseUint32( dataView, offset );
  1175. } else {
  1176. throw 'Cannot parse value for unsupported type: ' + type;
  1177. }
  1178. }
  1179. var bufferDataView = new DataView( buffer );
  1180. var uInt8Array = new Uint8Array( buffer );
  1181. var EXRHeader = {};
  1182. bufferDataView.getUint32( 0, true ); // magic
  1183. bufferDataView.getUint8( 4, true ); // versionByteZero
  1184. bufferDataView.getUint8( 5, true ); // fullMask
  1185. // start of header
  1186. var offset = { value: 8 }; // start at 8, after magic stuff
  1187. var keepReading = true;
  1188. while ( keepReading ) {
  1189. var attributeName = parseNullTerminatedString( buffer, offset );
  1190. if ( attributeName == 0 ) {
  1191. keepReading = false;
  1192. } else {
  1193. var attributeType = parseNullTerminatedString( buffer, offset );
  1194. var attributeSize = parseUint32( bufferDataView, offset );
  1195. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1196. EXRHeader[ attributeName ] = attributeValue;
  1197. }
  1198. }
  1199. // offsets
  1200. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1201. var uncompress;
  1202. var scanlineBlockSize;
  1203. switch ( EXRHeader.compression ) {
  1204. case 'NO_COMPRESSION':
  1205. scanlineBlockSize = 1;
  1206. uncompress = uncompressRAW;
  1207. break;
  1208. case 'RLE_COMPRESSION':
  1209. scanlineBlockSize = 1;
  1210. uncompress = uncompressRLE;
  1211. break;
  1212. case 'ZIPS_COMPRESSION':
  1213. scanlineBlockSize = 1;
  1214. uncompress = uncompressZIP;
  1215. break;
  1216. case 'ZIP_COMPRESSION':
  1217. scanlineBlockSize = 16;
  1218. uncompress = uncompressZIP;
  1219. break;
  1220. case 'PIZ_COMPRESSION':
  1221. scanlineBlockSize = 32;
  1222. uncompress = uncompressPIZ;
  1223. break;
  1224. case 'DWAA_COMPRESSION':
  1225. scanlineBlockSize = 32;
  1226. uncompress = uncompressDWA;
  1227. break;
  1228. case 'DWAB_COMPRESSION':
  1229. scanlineBlockSize = 256;
  1230. uncompress = uncompressDWA;
  1231. break;
  1232. default:
  1233. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1234. }
  1235. var size_t;
  1236. var getValue;
  1237. // mixed pixelType not supported
  1238. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1239. if ( pixelType === 1 ) { // half
  1240. switch ( this.type ) {
  1241. case THREE.UnsignedByteType:
  1242. case THREE.FloatType:
  1243. getValue = parseFloat16;
  1244. size_t = INT16_SIZE;
  1245. break;
  1246. case THREE.HalfFloatType:
  1247. getValue = parseUint16;
  1248. size_t = INT16_SIZE;
  1249. break;
  1250. }
  1251. } else if ( pixelType === 2 ) { // float
  1252. switch ( this.type ) {
  1253. case THREE.UnsignedByteType:
  1254. case THREE.FloatType:
  1255. getValue = parseFloat32;
  1256. size_t = FLOAT32_SIZE;
  1257. break;
  1258. case THREE.HalfFloatType:
  1259. throw 'EXRLoader.parse: unsupported HalfFloatType texture for FloatType image file.';
  1260. }
  1261. } else {
  1262. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1263. }
  1264. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1265. for ( var i = 0; i < numBlocks; i ++ ) {
  1266. parseUlong( bufferDataView, offset ); // scanlineOffset
  1267. }
  1268. // we should be passed the scanline offset table, start reading pixel data
  1269. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1270. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1271. // Firefox only supports RGBA (half) float textures
  1272. // var numChannels = EXRHeader.channels.length;
  1273. var numChannels = 4;
  1274. var size = width * height * numChannels;
  1275. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1276. switch ( this.type ) {
  1277. case THREE.UnsignedByteType:
  1278. case THREE.FloatType:
  1279. var byteArray = new Float32Array( size );
  1280. if ( EXRHeader.channels.length < numChannels ) {
  1281. byteArray.fill( 1, 0, size );
  1282. }
  1283. break;
  1284. case THREE.HalfFloatType:
  1285. var byteArray = new Uint16Array( size );
  1286. if ( EXRHeader.channels.length < numChannels ) {
  1287. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1288. }
  1289. break;
  1290. default:
  1291. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1292. break;
  1293. }
  1294. var channelOffsets = {
  1295. R: 0,
  1296. G: 1,
  1297. B: 2,
  1298. A: 3
  1299. };
  1300. var compressionInfo = {
  1301. size: 0,
  1302. width: width,
  1303. lines: scanlineBlockSize,
  1304. offset: offset,
  1305. array: uInt8Array,
  1306. viewer: bufferDataView,
  1307. type: pixelType,
  1308. channels: EXRHeader.channels.length,
  1309. };
  1310. var line;
  1311. var size;
  1312. var viewer;
  1313. var tmpOffset = { value: 0 };
  1314. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1315. line = parseUint32( bufferDataView, offset ); // line_no
  1316. size = parseUint32( bufferDataView, offset ); // data_len
  1317. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1318. compressionInfo.offset = offset;
  1319. compressionInfo.size = size;
  1320. viewer = uncompress( compressionInfo );
  1321. offset.value += size;
  1322. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1323. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1324. if ( true_y >= height ) break;
  1325. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1326. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1327. for ( var x = 0; x < width; x ++ ) {
  1328. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1329. tmpOffset.value = idx * size_t;
  1330. var val = getValue( viewer, tmpOffset );
  1331. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1332. }
  1333. }
  1334. }
  1335. }
  1336. if ( this.type === THREE.UnsignedByteType ) {
  1337. let v, i, j;
  1338. const size = byteArray.length;
  1339. const RGBEArray = new Uint8Array( size );
  1340. for ( let h = 0; h < height; ++ h ) {
  1341. for ( let w = 0; w < width; ++ w ) {
  1342. i = h * width * 4 + w * 4;
  1343. j = ( height - h ) * width * 4 + w * 4;
  1344. const red = byteArray[ j ];
  1345. const green = byteArray[ j + 1 ];
  1346. const blue = byteArray[ j + 2 ];
  1347. v = ( red > green ) ? red : green;
  1348. v = ( blue > v ) ? blue : v;
  1349. if ( v < 1e-32 ) {
  1350. RGBEArray[ i ] = RGBEArray[ i + 1 ] = RGBEArray[ i + 2 ] = RGBEArray[ i + 3 ] = 0;
  1351. } else {
  1352. const res = frexp( v );
  1353. v = res[ 0 ] * 256 / v;
  1354. RGBEArray[ i ] = red * v;
  1355. RGBEArray[ i + 1 ] = green * v;
  1356. RGBEArray[ i + 2 ] = blue * v;
  1357. RGBEArray[ i + 3 ] = res[ 1 ] + 128;
  1358. }
  1359. }
  1360. }
  1361. byteArray = RGBEArray;
  1362. }
  1363. let format = ( this.type === THREE.UnsignedByteType ) ? THREE.RGBEFormat : ( numChannels === 4 ) ? THREE.RGBAFormat : THREE.RGBFormat;
  1364. return {
  1365. header: EXRHeader,
  1366. width: width,
  1367. height: height,
  1368. data: byteArray,
  1369. format: format,
  1370. type: this.type
  1371. };
  1372. },
  1373. setDataType: function ( value ) {
  1374. this.type = value;
  1375. return this;
  1376. },
  1377. load: function ( url, onLoad, onProgress, onError ) {
  1378. function onLoadCallback( texture, texData ) {
  1379. switch ( texture.type ) {
  1380. case THREE.UnsignedByteType:
  1381. texture.encoding = THREE.RGBEEncoding;
  1382. texture.minFilter = THREE.NearestFilter;
  1383. texture.magFilter = THREE.NearestFilter;
  1384. texture.generateMipmaps = false;
  1385. texture.flipY = true;
  1386. break;
  1387. case THREE.FloatType:
  1388. case THREE.HalfFloatType:
  1389. texture.encoding = THREE.LinearEncoding;
  1390. texture.minFilter = THREE.LinearFilter;
  1391. texture.magFilter = THREE.LinearFilter;
  1392. texture.generateMipmaps = false;
  1393. texture.flipY = false;
  1394. break;
  1395. }
  1396. if ( onLoad ) onLoad( texture, texData );
  1397. }
  1398. return THREE.DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1399. }
  1400. } );