EXRLoader.js 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. * @author ScieCode / http://github.com/sciecode
  4. *
  5. * OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
  6. * Supports reading as UnsignedByte, HalfFloat and Float type data texture.
  7. *
  8. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  9. * implementation, so I have preserved their copyright notices.
  10. */
  11. // /*
  12. // Copyright (c) 2014 - 2017, Syoyo Fujita
  13. // All rights reserved.
  14. // Redistribution and use in source and binary forms, with or without
  15. // modification, are permitted provided that the following conditions are met:
  16. // * Redistributions of source code must retain the above copyright
  17. // notice, this list of conditions and the following disclaimer.
  18. // * Redistributions in binary form must reproduce the above copyright
  19. // notice, this list of conditions and the following disclaimer in the
  20. // documentation and/or other materials provided with the distribution.
  21. // * Neither the name of the Syoyo Fujita nor the
  22. // names of its contributors may be used to endorse or promote products
  23. // derived from this software without specific prior written permission.
  24. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  25. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  26. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  27. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  28. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  29. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  30. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  31. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  32. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  33. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  34. // */
  35. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  36. // ///////////////////////////////////////////////////////////////////////////
  37. // //
  38. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  39. // // Digital Ltd. LLC
  40. // //
  41. // // All rights reserved.
  42. // //
  43. // // Redistribution and use in source and binary forms, with or without
  44. // // modification, are permitted provided that the following conditions are
  45. // // met:
  46. // // * Redistributions of source code must retain the above copyright
  47. // // notice, this list of conditions and the following disclaimer.
  48. // // * Redistributions in binary form must reproduce the above
  49. // // copyright notice, this list of conditions and the following disclaimer
  50. // // in the documentation and/or other materials provided with the
  51. // // distribution.
  52. // // * Neither the name of Industrial Light & Magic nor the names of
  53. // // its contributors may be used to endorse or promote products derived
  54. // // from this software without specific prior written permission.
  55. // //
  56. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  57. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  58. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  59. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  60. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  61. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  62. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  63. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  64. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  65. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  66. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  67. // //
  68. // ///////////////////////////////////////////////////////////////////////////
  69. // // End of OpenEXR license -------------------------------------------------
  70. THREE.EXRLoader = function ( manager ) {
  71. THREE.DataTextureLoader.call( this, manager );
  72. this.type = THREE.FloatType;
  73. };
  74. THREE.EXRLoader.prototype = Object.assign( Object.create( THREE.DataTextureLoader.prototype ), {
  75. constructor: THREE.EXRLoader,
  76. parse: function ( buffer ) {
  77. const USHORT_RANGE = ( 1 << 16 );
  78. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  79. const HUF_ENCBITS = 16; // literal (value) bit length
  80. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  81. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  82. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  83. const HUF_DECMASK = HUF_DECSIZE - 1;
  84. const SHORT_ZEROCODE_RUN = 59;
  85. const LONG_ZEROCODE_RUN = 63;
  86. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  87. const ULONG_SIZE = 8;
  88. const FLOAT32_SIZE = 4;
  89. const INT32_SIZE = 4;
  90. const INT16_SIZE = 2;
  91. const INT8_SIZE = 1;
  92. const STATIC_HUFFMAN = 0;
  93. const DEFLATE = 1;
  94. const UNKNOWN = 0;
  95. const LOSSY_DCT = 1;
  96. const RLE = 2;
  97. const logBase = Math.pow( 2.7182818, 2.2 );
  98. var tmpDataView = new DataView( new ArrayBuffer( 8 ) );
  99. function frexp( value ) {
  100. if ( value === 0 ) return [ value, 0 ];
  101. tmpDataView.setFloat64( 0, value );
  102. var bits = ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF;
  103. if ( bits === 0 ) { // denormal
  104. tmpDataView.setFloat64( 0, value * Math.pow( 2, 64 ) ); // exp + 64
  105. bits = ( ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF ) - 64;
  106. }
  107. var exponent = bits - 1022;
  108. var mantissa = ldexp( value, - exponent );
  109. return [ mantissa, exponent ];
  110. }
  111. function ldexp( mantissa, exponent ) {
  112. var steps = Math.min( 3, Math.ceil( Math.abs( exponent ) / 1023 ) );
  113. var result = mantissa;
  114. for ( var i = 0; i < steps; i ++ )
  115. result *= Math.pow( 2, Math.floor( ( exponent + i ) / steps ) );
  116. return result;
  117. }
  118. function reverseLutFromBitmap( bitmap, lut ) {
  119. var k = 0;
  120. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  121. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  122. lut[ k ++ ] = i;
  123. }
  124. }
  125. var n = k - 1;
  126. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  127. return n;
  128. }
  129. function hufClearDecTable( hdec ) {
  130. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  131. hdec[ i ] = {};
  132. hdec[ i ].len = 0;
  133. hdec[ i ].lit = 0;
  134. hdec[ i ].p = null;
  135. }
  136. }
  137. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  138. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  139. while ( lc < nBits ) {
  140. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  141. lc += 8;
  142. }
  143. lc -= nBits;
  144. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  145. getBitsReturn.c = c;
  146. getBitsReturn.lc = lc;
  147. }
  148. const hufTableBuffer = new Array( 59 );
  149. function hufCanonicalCodeTable( hcode ) {
  150. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  151. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  152. var c = 0;
  153. for ( var i = 58; i > 0; -- i ) {
  154. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  155. hufTableBuffer[ i ] = c;
  156. c = nc;
  157. }
  158. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  159. var l = hcode[ i ];
  160. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  161. }
  162. }
  163. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  164. var p = inOffset;
  165. var c = 0;
  166. var lc = 0;
  167. for ( ; im <= iM; im ++ ) {
  168. if ( p.value - inOffset.value > ni ) return false;
  169. getBits( 6, c, lc, uInt8Array, p );
  170. var l = getBitsReturn.l;
  171. c = getBitsReturn.c;
  172. lc = getBitsReturn.lc;
  173. hcode[ im ] = l;
  174. if ( l == LONG_ZEROCODE_RUN ) {
  175. if ( p.value - inOffset.value > ni ) {
  176. throw 'Something wrong with hufUnpackEncTable';
  177. }
  178. getBits( 8, c, lc, uInt8Array, p );
  179. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  180. c = getBitsReturn.c;
  181. lc = getBitsReturn.lc;
  182. if ( im + zerun > iM + 1 ) {
  183. throw 'Something wrong with hufUnpackEncTable';
  184. }
  185. while ( zerun -- ) hcode[ im ++ ] = 0;
  186. im --;
  187. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  188. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  189. if ( im + zerun > iM + 1 ) {
  190. throw 'Something wrong with hufUnpackEncTable';
  191. }
  192. while ( zerun -- ) hcode[ im ++ ] = 0;
  193. im --;
  194. }
  195. }
  196. hufCanonicalCodeTable( hcode );
  197. }
  198. function hufLength( code ) {
  199. return code & 63;
  200. }
  201. function hufCode( code ) {
  202. return code >> 6;
  203. }
  204. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  205. for ( ; im <= iM; im ++ ) {
  206. var c = hufCode( hcode[ im ] );
  207. var l = hufLength( hcode[ im ] );
  208. if ( c >> l ) {
  209. throw 'Invalid table entry';
  210. }
  211. if ( l > HUF_DECBITS ) {
  212. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  213. if ( pl.len ) {
  214. throw 'Invalid table entry';
  215. }
  216. pl.lit ++;
  217. if ( pl.p ) {
  218. var p = pl.p;
  219. pl.p = new Array( pl.lit );
  220. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  221. pl.p[ i ] = p[ i ];
  222. }
  223. } else {
  224. pl.p = new Array( 1 );
  225. }
  226. pl.p[ pl.lit - 1 ] = im;
  227. } else if ( l ) {
  228. var plOffset = 0;
  229. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  230. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  231. if ( pl.len || pl.p ) {
  232. throw 'Invalid table entry';
  233. }
  234. pl.len = l;
  235. pl.lit = im;
  236. plOffset ++;
  237. }
  238. }
  239. }
  240. return true;
  241. }
  242. const getCharReturn = { c: 0, lc: 0 };
  243. function getChar( c, lc, uInt8Array, inOffset ) {
  244. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  245. lc += 8;
  246. getCharReturn.c = c;
  247. getCharReturn.lc = lc;
  248. }
  249. const getCodeReturn = { c: 0, lc: 0 };
  250. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  251. if ( po == rlc ) {
  252. if ( lc < 8 ) {
  253. getChar( c, lc, uInt8Array, inOffset );
  254. c = getCharReturn.c;
  255. lc = getCharReturn.lc;
  256. }
  257. lc -= 8;
  258. var cs = ( c >> lc );
  259. var cs = new Uint8Array( [ cs ] )[ 0 ];
  260. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  261. return false;
  262. }
  263. var s = outBuffer[ outBufferOffset.value - 1 ];
  264. while ( cs -- > 0 ) {
  265. outBuffer[ outBufferOffset.value ++ ] = s;
  266. }
  267. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  268. outBuffer[ outBufferOffset.value ++ ] = po;
  269. } else {
  270. return false;
  271. }
  272. getCodeReturn.c = c;
  273. getCodeReturn.lc = lc;
  274. }
  275. function UInt16( value ) {
  276. return ( value & 0xFFFF );
  277. }
  278. function Int16( value ) {
  279. var ref = UInt16( value );
  280. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  281. }
  282. const wdec14Return = { a: 0, b: 0 };
  283. function wdec14( l, h ) {
  284. var ls = Int16( l );
  285. var hs = Int16( h );
  286. var hi = hs;
  287. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  288. var as = ai;
  289. var bs = ai - hi;
  290. wdec14Return.a = as;
  291. wdec14Return.b = bs;
  292. }
  293. function wav2Decode( buffer, j, nx, ox, ny, oy ) {
  294. var n = ( nx > ny ) ? ny : nx;
  295. var p = 1;
  296. var p2;
  297. while ( p <= n ) p <<= 1;
  298. p >>= 1;
  299. p2 = p;
  300. p >>= 1;
  301. while ( p >= 1 ) {
  302. var py = 0;
  303. var ey = py + oy * ( ny - p2 );
  304. var oy1 = oy * p;
  305. var oy2 = oy * p2;
  306. var ox1 = ox * p;
  307. var ox2 = ox * p2;
  308. var i00, i01, i10, i11;
  309. for ( ; py <= ey; py += oy2 ) {
  310. var px = py;
  311. var ex = py + ox * ( nx - p2 );
  312. for ( ; px <= ex; px += ox2 ) {
  313. var p01 = px + ox1;
  314. var p10 = px + oy1;
  315. var p11 = p10 + ox1;
  316. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  317. i00 = wdec14Return.a;
  318. i10 = wdec14Return.b;
  319. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  320. i01 = wdec14Return.a;
  321. i11 = wdec14Return.b;
  322. wdec14( i00, i01 );
  323. buffer[ px + j ] = wdec14Return.a;
  324. buffer[ p01 + j ] = wdec14Return.b;
  325. wdec14( i10, i11 );
  326. buffer[ p10 + j ] = wdec14Return.a;
  327. buffer[ p11 + j ] = wdec14Return.b;
  328. }
  329. if ( nx & p ) {
  330. var p10 = px + oy1;
  331. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  332. i00 = wdec14Return.a;
  333. buffer[ p10 + j ] = wdec14Return.b;
  334. buffer[ px + j ] = i00;
  335. }
  336. }
  337. if ( ny & p ) {
  338. var px = py;
  339. var ex = py + ox * ( nx - p2 );
  340. for ( ; px <= ex; px += ox2 ) {
  341. var p01 = px + ox1;
  342. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  343. i00 = wdec14Return.a;
  344. buffer[ p01 + j ] = wdec14Return.b;
  345. buffer[ px + j ] = i00;
  346. }
  347. }
  348. p2 = p;
  349. p >>= 1;
  350. }
  351. return py;
  352. }
  353. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  354. var c = 0;
  355. var lc = 0;
  356. var outBufferEndOffset = no;
  357. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  358. while ( inOffset.value < inOffsetEnd ) {
  359. getChar( c, lc, uInt8Array, inOffset );
  360. c = getCharReturn.c;
  361. lc = getCharReturn.lc;
  362. while ( lc >= HUF_DECBITS ) {
  363. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  364. var pl = decodingTable[ index ];
  365. if ( pl.len ) {
  366. lc -= pl.len;
  367. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  368. c = getCodeReturn.c;
  369. lc = getCodeReturn.lc;
  370. } else {
  371. if ( ! pl.p ) {
  372. throw 'hufDecode issues';
  373. }
  374. var j;
  375. for ( j = 0; j < pl.lit; j ++ ) {
  376. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  377. while ( lc < l && inOffset.value < inOffsetEnd ) {
  378. getChar( c, lc, uInt8Array, inOffset );
  379. c = getCharReturn.c;
  380. lc = getCharReturn.lc;
  381. }
  382. if ( lc >= l ) {
  383. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  384. lc -= l;
  385. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  386. c = getCodeReturn.c;
  387. lc = getCodeReturn.lc;
  388. break;
  389. }
  390. }
  391. }
  392. if ( j == pl.lit ) {
  393. throw 'hufDecode issues';
  394. }
  395. }
  396. }
  397. }
  398. var i = ( 8 - ni ) & 7;
  399. c >>= i;
  400. lc -= i;
  401. while ( lc > 0 ) {
  402. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  403. if ( pl.len ) {
  404. lc -= pl.len;
  405. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  406. c = getCodeReturn.c;
  407. lc = getCodeReturn.lc;
  408. } else {
  409. throw 'hufDecode issues';
  410. }
  411. }
  412. return true;
  413. }
  414. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  415. var outOffset = { value: 0 };
  416. var initialInOffset = inOffset.value;
  417. var im = parseUint32( inDataView, inOffset );
  418. var iM = parseUint32( inDataView, inOffset );
  419. inOffset.value += 4;
  420. var nBits = parseUint32( inDataView, inOffset );
  421. inOffset.value += 4;
  422. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  423. throw 'Something wrong with HUF_ENCSIZE';
  424. }
  425. var freq = new Array( HUF_ENCSIZE );
  426. var hdec = new Array( HUF_DECSIZE );
  427. hufClearDecTable( hdec );
  428. var ni = nCompressed - ( inOffset.value - initialInOffset );
  429. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  430. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  431. throw 'Something wrong with hufUncompress';
  432. }
  433. hufBuildDecTable( freq, im, iM, hdec );
  434. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  435. }
  436. function applyLut( lut, data, nData ) {
  437. for ( var i = 0; i < nData; ++ i ) {
  438. data[ i ] = lut[ data[ i ] ];
  439. }
  440. }
  441. function predictor( source ) {
  442. for ( var t = 1; t < source.length; t ++ ) {
  443. var d = source[ t - 1 ] + source[ t ] - 128;
  444. source[ t ] = d;
  445. }
  446. }
  447. function interleaveScalar( source, out ) {
  448. var t1 = 0;
  449. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  450. var s = 0;
  451. var stop = source.length - 1;
  452. while ( true ) {
  453. if ( s > stop ) break;
  454. out[ s ++ ] = source[ t1 ++ ];
  455. if ( s > stop ) break;
  456. out[ s ++ ] = source[ t2 ++ ];
  457. }
  458. }
  459. function decodeRunLength( source ) {
  460. var size = source.byteLength;
  461. var out = new Array();
  462. var p = 0;
  463. var reader = new DataView( source );
  464. while ( size > 0 ) {
  465. var l = reader.getInt8( p ++ );
  466. if ( l < 0 ) {
  467. var count = - l;
  468. size -= count + 1;
  469. for ( var i = 0; i < count; i ++ ) {
  470. out.push( reader.getUint8( p ++ ) );
  471. }
  472. } else {
  473. var count = l;
  474. size -= 2;
  475. var value = reader.getUint8( p ++ );
  476. for ( var i = 0; i < count + 1; i ++ ) {
  477. out.push( value );
  478. }
  479. }
  480. }
  481. return out;
  482. }
  483. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  484. var dataView = new DataView( outBuffer.buffer );
  485. var width = channelData[ cscSet.idx[ 0 ] ].width;
  486. var height = channelData[ cscSet.idx[ 0 ] ].height;
  487. var numComp = 3;
  488. var numFullBlocksX = Math.floor( width / 8.0 );
  489. var numBlocksX = Math.ceil( width / 8.0 );
  490. var numBlocksY = Math.ceil( height / 8.0 );
  491. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  492. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  493. var currAcComp = { value: 0 };
  494. var currDcComp = new Array( numComp );
  495. var dctData = new Array( numComp );
  496. var halfZigBlock = new Array( numComp );
  497. var rowBlock = new Array( numComp );
  498. var rowOffsets = new Array( numComp );
  499. for ( let comp = 0; comp < numComp; ++ comp ) {
  500. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  501. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  502. dctData[ comp ] = new Float32Array( 64 );
  503. halfZigBlock[ comp ] = new Uint16Array( 64 );
  504. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  505. }
  506. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  507. var maxY = 8;
  508. if ( blocky == numBlocksY - 1 )
  509. maxY = leftoverY;
  510. var maxX = 8;
  511. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  512. if ( blockx == numBlocksX - 1 )
  513. maxX = leftoverX;
  514. for ( let comp = 0; comp < numComp; ++ comp ) {
  515. halfZigBlock[ comp ].fill( 0 );
  516. // set block DC component
  517. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
  518. // set block AC components
  519. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  520. // UnZigZag block to float
  521. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  522. // decode float dct
  523. dctInverse( dctData[ comp ] );
  524. }
  525. if ( numComp == 3 ) {
  526. csc709Inverse( dctData );
  527. }
  528. for ( let comp = 0; comp < numComp; ++ comp ) {
  529. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  530. }
  531. } // blockx
  532. let offset = 0;
  533. for ( let comp = 0; comp < numComp; ++ comp ) {
  534. let type = channelData[ cscSet.idx[ comp ] ].type;
  535. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  536. offset = rowOffsets[ comp ][ y ];
  537. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  538. let src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  539. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  540. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  541. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  542. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  543. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  544. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  545. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  546. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  547. offset += 8 * INT16_SIZE * type;
  548. }
  549. }
  550. // handle partial X blocks
  551. if ( numFullBlocksX != numBlocksX ) {
  552. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  553. let offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  554. let src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  555. for ( let x = 0; x < maxX; ++ x ) {
  556. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  557. }
  558. }
  559. }
  560. } // comp
  561. } // blocky
  562. var halfRow = new Uint16Array( width );
  563. var dataView = new DataView( outBuffer.buffer );
  564. // convert channels back to float, if needed
  565. for ( var comp = 0; comp < numComp; ++ comp ) {
  566. channelData[ cscSet.idx[ comp ] ].decoded = true;
  567. var type = channelData[ cscSet.idx[ comp ] ].type;
  568. if ( channelData[ comp ].type != 2 ) continue;
  569. for ( var y = 0; y < height; ++ y ) {
  570. let offset = rowOffsets[ comp ][ y ];
  571. for ( var x = 0; x < width; ++ x ) {
  572. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  573. }
  574. for ( var x = 0; x < width; ++ x ) {
  575. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  576. }
  577. }
  578. }
  579. }
  580. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  581. var acValue;
  582. var dctComp = 1;
  583. while ( dctComp < 64 ) {
  584. acValue = acBuffer[ currAcComp.value ];
  585. if ( acValue == 0xff00 ) {
  586. dctComp = 64;
  587. } else if ( acValue >> 8 == 0xff ) {
  588. dctComp += acValue & 0xff;
  589. } else {
  590. halfZigBlock[ dctComp ] = acValue;
  591. dctComp ++;
  592. }
  593. currAcComp.value ++;
  594. }
  595. }
  596. function unZigZag( src, dst ) {
  597. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  598. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  599. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  600. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  601. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  602. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  603. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  604. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  605. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  606. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  607. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  608. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  609. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  610. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  611. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  612. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  613. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  614. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  615. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  616. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  617. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  618. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  619. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  620. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  621. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  622. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  623. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  624. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  625. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  626. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  627. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  628. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  629. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  630. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  631. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  632. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  633. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  634. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  635. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  636. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  637. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  638. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  639. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  640. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  641. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  642. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  643. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  644. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  645. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  646. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  647. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  648. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  649. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  650. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  651. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  652. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  653. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  654. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  655. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  656. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  657. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  658. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  659. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  660. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  661. }
  662. function dctInverse( data ) {
  663. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  664. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  665. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  666. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  667. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  668. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  669. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  670. var alpha = new Array( 4 );
  671. var beta = new Array( 4 );
  672. var theta = new Array( 4 );
  673. var gamma = new Array( 4 );
  674. for ( var row = 0; row < 8; ++ row ) {
  675. var rowPtr = row * 8;
  676. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  677. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  678. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  679. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  680. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  681. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  682. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  683. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  684. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  685. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  686. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  687. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  688. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  689. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  690. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  691. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  692. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  693. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  694. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  695. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  696. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  697. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  698. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  699. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  700. }
  701. for ( var column = 0; column < 8; ++ column ) {
  702. alpha[ 0 ] = c * data[ 16 + column ];
  703. alpha[ 1 ] = f * data[ 16 + column ];
  704. alpha[ 2 ] = c * data[ 48 + column ];
  705. alpha[ 3 ] = f * data[ 48 + column ];
  706. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  707. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  708. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  709. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  710. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  711. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  712. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  713. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  714. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  715. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  716. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  717. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  718. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  719. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  720. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  721. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  722. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  723. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  724. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  725. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  726. }
  727. }
  728. function csc709Inverse( data ) {
  729. for ( var i = 0; i < 64; ++ i ) {
  730. var y = data[ 0 ][ i ];
  731. var cb = data[ 1 ][ i ];
  732. var cr = data[ 2 ][ i ];
  733. data[ 0 ][ i ] = y + 1.5747 * cr;
  734. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  735. data[ 2 ][ i ] = y + 1.8556 * cb;
  736. }
  737. }
  738. function convertToHalf( src, dst, idx ) {
  739. for ( var i = 0; i < 64; ++ i ) {
  740. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  741. }
  742. }
  743. function toLinear( float ) {
  744. if ( float <= 1 ) {
  745. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  746. } else {
  747. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  748. }
  749. }
  750. function uncompressRAW( info ) {
  751. return new DataView( info.array.buffer, info.offset.value, info.size );
  752. }
  753. function uncompressRLE( info ) {
  754. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  755. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  756. var tmpBuffer = new Uint8Array( rawBuffer.length );
  757. predictor( rawBuffer ); // revert predictor
  758. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  759. return new DataView( tmpBuffer.buffer );
  760. }
  761. function uncompressZIP( info ) {
  762. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  763. if ( typeof Zlib === 'undefined' ) {
  764. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  765. }
  766. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  767. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  768. var tmpBuffer = new Uint8Array( rawBuffer.length );
  769. predictor( rawBuffer ); // revert predictor
  770. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  771. return new DataView( tmpBuffer.buffer );
  772. }
  773. function uncompressPIZ( info ) {
  774. var inDataView = info.viewer;
  775. var inOffset = { value: info.offset.value };
  776. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  777. var outBuffer = new Uint16Array( tmpBufSize );
  778. var bitmap = new Uint8Array( BITMAP_SIZE );
  779. // Setup channel info
  780. var outBufferEnd = 0;
  781. var pizChannelData = new Array( info.channels );
  782. for ( var i = 0; i < info.channels; i ++ ) {
  783. pizChannelData[ i ] = {};
  784. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  785. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  786. pizChannelData[ i ][ 'nx' ] = info.width;
  787. pizChannelData[ i ][ 'ny' ] = info.lines;
  788. pizChannelData[ i ][ 'size' ] = info.type;
  789. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  790. }
  791. // Read range compression data
  792. var minNonZero = parseUint16( inDataView, inOffset );
  793. var maxNonZero = parseUint16( inDataView, inOffset );
  794. if ( maxNonZero >= BITMAP_SIZE ) {
  795. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  796. }
  797. if ( minNonZero <= maxNonZero ) {
  798. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  799. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  800. }
  801. }
  802. // Reverse LUT
  803. var lut = new Uint16Array( USHORT_RANGE );
  804. reverseLutFromBitmap( bitmap, lut );
  805. var length = parseUint32( inDataView, inOffset );
  806. // Huffman decoding
  807. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  808. // Wavelet decoding
  809. for ( var i = 0; i < info.channels; ++ i ) {
  810. var cd = pizChannelData[ i ];
  811. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  812. wav2Decode(
  813. outBuffer,
  814. cd.start + j,
  815. cd.nx,
  816. cd.size,
  817. cd.ny,
  818. cd.nx * cd.size
  819. );
  820. }
  821. }
  822. // Expand the pixel data to their original range
  823. applyLut( lut, outBuffer, outBufferEnd );
  824. // Rearrange the pixel data into the format expected by the caller.
  825. var tmpOffset = 0;
  826. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  827. for ( var y = 0; y < info.lines; y ++ ) {
  828. for ( var c = 0; c < info.channels; c ++ ) {
  829. var cd = pizChannelData[ c ];
  830. var n = cd.nx * cd.size;
  831. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  832. tmpBuffer.set( cp, tmpOffset );
  833. tmpOffset += n * INT16_SIZE;
  834. cd.end += n;
  835. }
  836. }
  837. return new DataView( tmpBuffer.buffer );
  838. }
  839. function uncompressDWA( info ) {
  840. var inDataView = info.viewer;
  841. var inOffset = { value: info.offset.value };
  842. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  843. // Read compression header information
  844. var dwaHeader = {
  845. version: parseInt64( inDataView, inOffset ),
  846. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  847. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  848. acCompressedSize: parseInt64( inDataView, inOffset ),
  849. dcCompressedSize: parseInt64( inDataView, inOffset ),
  850. rleCompressedSize: parseInt64( inDataView, inOffset ),
  851. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  852. rleRawSize: parseInt64( inDataView, inOffset ),
  853. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  854. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  855. acCompression: parseInt64( inDataView, inOffset )
  856. };
  857. if ( dwaHeader.version < 2 )
  858. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  859. // Read channel ruleset information
  860. var channelRules = new Array();
  861. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  862. while ( ruleSize > 0 ) {
  863. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  864. var value = parseUint8( inDataView, inOffset );
  865. var compression = ( value >> 2 ) & 3;
  866. var csc = ( value >> 4 ) - 1;
  867. var index = new Int8Array( [ csc ] )[ 0 ];
  868. var type = parseUint8( inDataView, inOffset );
  869. channelRules.push( {
  870. name: name,
  871. index: index,
  872. type: type,
  873. compression: compression,
  874. } );
  875. ruleSize -= name.length + 3;
  876. }
  877. // Classify channels
  878. var channels = EXRHeader.channels;
  879. var channelData = new Array( info.channels );
  880. for ( var i = 0; i < info.channels; ++ i ) {
  881. var cd = channelData[ i ] = {};
  882. var channel = channels[ i ];
  883. cd.name = channel.name;
  884. cd.compression = UNKNOWN;
  885. cd.decoded = false;
  886. cd.type = channel.pixelType;
  887. cd.pLinear = channel.pLinear;
  888. cd.width = info.width;
  889. cd.height = info.lines;
  890. }
  891. var cscSet = {
  892. idx: new Array( 3 )
  893. };
  894. for ( var offset = 0; offset < info.channels; ++ offset ) {
  895. var cd = channelData[ offset ];
  896. for ( var i = 0; i < channelRules.length; ++ i ) {
  897. var rule = channelRules[ i ];
  898. if ( cd.name == rule.name ) {
  899. cd.compression = rule.compression;
  900. if ( rule.index >= 0 ) {
  901. cscSet.idx[ rule.index ] = offset;
  902. }
  903. cd.offset = offset;
  904. }
  905. }
  906. }
  907. // Read DCT - AC component data
  908. if ( dwaHeader.acCompressedSize > 0 ) {
  909. switch ( dwaHeader.acCompression ) {
  910. case STATIC_HUFFMAN:
  911. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  912. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  913. break;
  914. case DEFLATE:
  915. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  916. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  917. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  918. inOffset.value += dwaHeader.totalAcUncompressedCount;
  919. break;
  920. }
  921. }
  922. // Read DCT - DC component data
  923. if ( dwaHeader.dcCompressedSize > 0 ) {
  924. var zlibInfo = {
  925. array: info.array,
  926. offset: inOffset,
  927. size: dwaHeader.dcCompressedSize
  928. };
  929. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  930. inOffset.value += dwaHeader.dcCompressedSize;
  931. }
  932. // Read RLE compressed data
  933. if ( dwaHeader.rleRawSize > 0 ) {
  934. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  935. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  936. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  937. inOffset.value += dwaHeader.rleCompressedSize;
  938. }
  939. // Prepare outbuffer data offset
  940. var outBufferEnd = 0;
  941. var rowOffsets = new Array( channelData.length );
  942. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  943. rowOffsets[ i ] = new Array();
  944. }
  945. for ( var y = 0; y < info.lines; ++ y ) {
  946. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  947. rowOffsets[ chan ].push( outBufferEnd );
  948. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  949. }
  950. }
  951. // Lossy DCT decode RGB channels
  952. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  953. // Decode other channels
  954. for ( var i = 0; i < channelData.length; ++ i ) {
  955. var cd = channelData[ i ];
  956. if ( cd.decoded ) continue;
  957. switch ( cd.compression ) {
  958. case RLE:
  959. var row = 0;
  960. var rleOffset = 0;
  961. for ( var y = 0; y < info.lines; ++ y ) {
  962. var rowOffsetBytes = rowOffsets[ i ][ row ];
  963. for ( var x = 0; x < cd.width; ++ x ) {
  964. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  965. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  966. }
  967. rleOffset ++;
  968. }
  969. row ++;
  970. }
  971. break;
  972. case LOSSY_DCT: // skip
  973. default:
  974. throw 'EXRLoader.parse: unsupported channel compression';
  975. }
  976. }
  977. return new DataView( outBuffer.buffer );
  978. }
  979. function parseNullTerminatedString( buffer, offset ) {
  980. var uintBuffer = new Uint8Array( buffer );
  981. var endOffset = 0;
  982. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  983. endOffset += 1;
  984. }
  985. var stringValue = new TextDecoder().decode(
  986. uintBuffer.slice( offset.value, offset.value + endOffset )
  987. );
  988. offset.value = offset.value + endOffset + 1;
  989. return stringValue;
  990. }
  991. function parseFixedLengthString( buffer, offset, size ) {
  992. var stringValue = new TextDecoder().decode(
  993. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  994. );
  995. offset.value = offset.value + size;
  996. return stringValue;
  997. }
  998. function parseUlong( dataView, offset ) {
  999. var uLong = dataView.getUint32( 0, true );
  1000. offset.value = offset.value + ULONG_SIZE;
  1001. return uLong;
  1002. }
  1003. function parseRational( dataView, offset ) {
  1004. var x = parseUint32( dataView, offset );
  1005. var y = parseUint32( dataView, offset );
  1006. return [ x, y ];
  1007. }
  1008. function parseTimecode( dataView, offset ) {
  1009. var x = parseUint32( dataView, offset );
  1010. var y = parseUint32( dataView, offset );
  1011. return [ x, y ];
  1012. }
  1013. function parseUint32( dataView, offset ) {
  1014. var Uint32 = dataView.getUint32( offset.value, true );
  1015. offset.value = offset.value + INT32_SIZE;
  1016. return Uint32;
  1017. }
  1018. function parseUint8Array( uInt8Array, offset ) {
  1019. var Uint8 = uInt8Array[ offset.value ];
  1020. offset.value = offset.value + INT8_SIZE;
  1021. return Uint8;
  1022. }
  1023. function parseUint8( dataView, offset ) {
  1024. var Uint8 = dataView.getUint8( offset.value );
  1025. offset.value = offset.value + INT8_SIZE;
  1026. return Uint8;
  1027. }
  1028. function parseInt64( dataView, offset ) {
  1029. var int = Number( dataView.getBigInt64( offset.value, true ) );
  1030. offset.value += ULONG_SIZE;
  1031. return int;
  1032. }
  1033. function parseFloat32( dataView, offset ) {
  1034. var float = dataView.getFloat32( offset.value, true );
  1035. offset.value += FLOAT32_SIZE;
  1036. return float;
  1037. }
  1038. function decodeFloat32( dataView, offset ) {
  1039. return encodeFloat16( parseFloat32( dataView, offset ) );
  1040. }
  1041. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1042. function decodeFloat16( binary ) {
  1043. var exponent = ( binary & 0x7C00 ) >> 10,
  1044. fraction = binary & 0x03FF;
  1045. return ( binary >> 15 ? - 1 : 1 ) * (
  1046. exponent ?
  1047. (
  1048. exponent === 0x1F ?
  1049. fraction ? NaN : Infinity :
  1050. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1051. ) :
  1052. 6.103515625e-5 * ( fraction / 0x400 )
  1053. );
  1054. }
  1055. // http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
  1056. function encodeFloat16( val ) {
  1057. /* This method is faster than the OpenEXR implementation (very often
  1058. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  1059. * by James Tursa?s half-precision code.
  1060. */
  1061. tmpDataView.setFloat32( 0, val );
  1062. var x = tmpDataView.getInt32( 0 );
  1063. var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
  1064. var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
  1065. var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
  1066. /* If zero, or denormal, or exponent underflows too much for a denormal
  1067. * half, return signed zero. */
  1068. if ( e < 103 ) return bits;
  1069. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  1070. if ( e > 142 ) {
  1071. bits |= 0x7c00;
  1072. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  1073. * not Inf, so make sure we set one mantissa bit too. */
  1074. bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
  1075. return bits;
  1076. }
  1077. /* If exponent underflows but not too much, return a denormal */
  1078. if ( e < 113 ) {
  1079. m |= 0x0800;
  1080. /* Extra rounding may overflow and set mantissa to 0 and exponent
  1081. * to 1, which is OK. */
  1082. bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
  1083. return bits;
  1084. }
  1085. bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
  1086. /* Extra rounding. An overflow will set mantissa to 0 and increment
  1087. * the exponent, which is OK. */
  1088. bits += m & 1;
  1089. return bits;
  1090. }
  1091. function parseUint16( dataView, offset ) {
  1092. var Uint16 = dataView.getUint16( offset.value, true );
  1093. offset.value += INT16_SIZE;
  1094. return Uint16;
  1095. }
  1096. function parseFloat16( buffer, offset ) {
  1097. return decodeFloat16( parseUint16( buffer, offset ) );
  1098. }
  1099. function parseChlist( dataView, buffer, offset, size ) {
  1100. var startOffset = offset.value;
  1101. var channels = [];
  1102. while ( offset.value < ( startOffset + size - 1 ) ) {
  1103. var name = parseNullTerminatedString( buffer, offset );
  1104. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  1105. var pLinear = parseUint8( dataView, offset );
  1106. offset.value += 3; // reserved, three chars
  1107. var xSampling = parseUint32( dataView, offset );
  1108. var ySampling = parseUint32( dataView, offset );
  1109. channels.push( {
  1110. name: name,
  1111. pixelType: pixelType,
  1112. pLinear: pLinear,
  1113. xSampling: xSampling,
  1114. ySampling: ySampling
  1115. } );
  1116. }
  1117. offset.value += 1;
  1118. return channels;
  1119. }
  1120. function parseChromaticities( dataView, offset ) {
  1121. var redX = parseFloat32( dataView, offset );
  1122. var redY = parseFloat32( dataView, offset );
  1123. var greenX = parseFloat32( dataView, offset );
  1124. var greenY = parseFloat32( dataView, offset );
  1125. var blueX = parseFloat32( dataView, offset );
  1126. var blueY = parseFloat32( dataView, offset );
  1127. var whiteX = parseFloat32( dataView, offset );
  1128. var whiteY = parseFloat32( dataView, offset );
  1129. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1130. }
  1131. function parseCompression( dataView, offset ) {
  1132. var compressionCodes = [
  1133. 'NO_COMPRESSION',
  1134. 'RLE_COMPRESSION',
  1135. 'ZIPS_COMPRESSION',
  1136. 'ZIP_COMPRESSION',
  1137. 'PIZ_COMPRESSION',
  1138. 'PXR24_COMPRESSION',
  1139. 'B44_COMPRESSION',
  1140. 'B44A_COMPRESSION',
  1141. 'DWAA_COMPRESSION',
  1142. 'DWAB_COMPRESSION'
  1143. ];
  1144. var compression = parseUint8( dataView, offset );
  1145. return compressionCodes[ compression ];
  1146. }
  1147. function parseBox2i( dataView, offset ) {
  1148. var xMin = parseUint32( dataView, offset );
  1149. var yMin = parseUint32( dataView, offset );
  1150. var xMax = parseUint32( dataView, offset );
  1151. var yMax = parseUint32( dataView, offset );
  1152. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1153. }
  1154. function parseLineOrder( dataView, offset ) {
  1155. var lineOrders = [
  1156. 'INCREASING_Y'
  1157. ];
  1158. var lineOrder = parseUint8( dataView, offset );
  1159. return lineOrders[ lineOrder ];
  1160. }
  1161. function parseV2f( dataView, offset ) {
  1162. var x = parseFloat32( dataView, offset );
  1163. var y = parseFloat32( dataView, offset );
  1164. return [ x, y ];
  1165. }
  1166. function parseValue( dataView, buffer, offset, type, size ) {
  1167. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1168. return parseFixedLengthString( buffer, offset, size );
  1169. } else if ( type === 'chlist' ) {
  1170. return parseChlist( dataView, buffer, offset, size );
  1171. } else if ( type === 'chromaticities' ) {
  1172. return parseChromaticities( dataView, offset );
  1173. } else if ( type === 'compression' ) {
  1174. return parseCompression( dataView, offset );
  1175. } else if ( type === 'box2i' ) {
  1176. return parseBox2i( dataView, offset );
  1177. } else if ( type === 'lineOrder' ) {
  1178. return parseLineOrder( dataView, offset );
  1179. } else if ( type === 'float' ) {
  1180. return parseFloat32( dataView, offset );
  1181. } else if ( type === 'v2f' ) {
  1182. return parseV2f( dataView, offset );
  1183. } else if ( type === 'int' ) {
  1184. return parseUint32( dataView, offset );
  1185. } else if ( type === 'rational' ) {
  1186. return parseRational( dataView, offset );
  1187. } else if ( type === 'timecode' ) {
  1188. return parseTimecode( dataView, offset );
  1189. } else {
  1190. throw 'Cannot parse value for unsupported type: ' + type;
  1191. }
  1192. }
  1193. var bufferDataView = new DataView( buffer );
  1194. var uInt8Array = new Uint8Array( buffer );
  1195. var EXRHeader = {};
  1196. bufferDataView.getUint32( 0, true ); // magic
  1197. bufferDataView.getUint8( 4, true ); // versionByteZero
  1198. bufferDataView.getUint8( 5, true ); // fullMask
  1199. // start of header
  1200. var offset = { value: 8 }; // start at 8, after magic stuff
  1201. var keepReading = true;
  1202. while ( keepReading ) {
  1203. var attributeName = parseNullTerminatedString( buffer, offset );
  1204. if ( attributeName == 0 ) {
  1205. keepReading = false;
  1206. } else {
  1207. var attributeType = parseNullTerminatedString( buffer, offset );
  1208. var attributeSize = parseUint32( bufferDataView, offset );
  1209. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1210. EXRHeader[ attributeName ] = attributeValue;
  1211. }
  1212. }
  1213. // offsets
  1214. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1215. var uncompress;
  1216. var scanlineBlockSize;
  1217. switch ( EXRHeader.compression ) {
  1218. case 'NO_COMPRESSION':
  1219. scanlineBlockSize = 1;
  1220. uncompress = uncompressRAW;
  1221. break;
  1222. case 'RLE_COMPRESSION':
  1223. scanlineBlockSize = 1;
  1224. uncompress = uncompressRLE;
  1225. break;
  1226. case 'ZIPS_COMPRESSION':
  1227. scanlineBlockSize = 1;
  1228. uncompress = uncompressZIP;
  1229. break;
  1230. case 'ZIP_COMPRESSION':
  1231. scanlineBlockSize = 16;
  1232. uncompress = uncompressZIP;
  1233. break;
  1234. case 'PIZ_COMPRESSION':
  1235. scanlineBlockSize = 32;
  1236. uncompress = uncompressPIZ;
  1237. break;
  1238. case 'DWAA_COMPRESSION':
  1239. scanlineBlockSize = 32;
  1240. uncompress = uncompressDWA;
  1241. break;
  1242. case 'DWAB_COMPRESSION':
  1243. scanlineBlockSize = 256;
  1244. uncompress = uncompressDWA;
  1245. break;
  1246. default:
  1247. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1248. }
  1249. var size_t;
  1250. var getValue;
  1251. // mixed pixelType not supported
  1252. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1253. if ( pixelType === 1 ) { // half
  1254. switch ( this.type ) {
  1255. case THREE.UnsignedByteType:
  1256. case THREE.FloatType:
  1257. getValue = parseFloat16;
  1258. size_t = INT16_SIZE;
  1259. break;
  1260. case THREE.HalfFloatType:
  1261. getValue = parseUint16;
  1262. size_t = INT16_SIZE;
  1263. break;
  1264. }
  1265. } else if ( pixelType === 2 ) { // float
  1266. switch ( this.type ) {
  1267. case THREE.UnsignedByteType:
  1268. case THREE.FloatType:
  1269. getValue = parseFloat32;
  1270. size_t = FLOAT32_SIZE;
  1271. break;
  1272. case THREE.HalfFloatType:
  1273. getValue = decodeFloat32;
  1274. size_t = FLOAT32_SIZE;
  1275. }
  1276. } else {
  1277. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1278. }
  1279. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1280. for ( var i = 0; i < numBlocks; i ++ ) {
  1281. parseUlong( bufferDataView, offset ); // scanlineOffset
  1282. }
  1283. // we should be passed the scanline offset table, start reading pixel data
  1284. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1285. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1286. // Firefox only supports RGBA (half) float textures
  1287. // var numChannels = EXRHeader.channels.length;
  1288. var numChannels = 4;
  1289. var size = width * height * numChannels;
  1290. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1291. switch ( this.type ) {
  1292. case THREE.UnsignedByteType:
  1293. case THREE.FloatType:
  1294. var byteArray = new Float32Array( size );
  1295. if ( EXRHeader.channels.length < numChannels ) {
  1296. byteArray.fill( 1, 0, size );
  1297. }
  1298. break;
  1299. case THREE.HalfFloatType:
  1300. var byteArray = new Uint16Array( size );
  1301. if ( EXRHeader.channels.length < numChannels ) {
  1302. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1303. }
  1304. break;
  1305. default:
  1306. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1307. break;
  1308. }
  1309. var channelOffsets = {
  1310. R: 0,
  1311. G: 1,
  1312. B: 2,
  1313. A: 3
  1314. };
  1315. var compressionInfo = {
  1316. size: 0,
  1317. width: width,
  1318. lines: scanlineBlockSize,
  1319. offset: offset,
  1320. array: uInt8Array,
  1321. viewer: bufferDataView,
  1322. type: pixelType,
  1323. channels: EXRHeader.channels.length,
  1324. };
  1325. var line;
  1326. var size;
  1327. var viewer;
  1328. var tmpOffset = { value: 0 };
  1329. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1330. line = parseUint32( bufferDataView, offset ); // line_no
  1331. size = parseUint32( bufferDataView, offset ); // data_len
  1332. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1333. compressionInfo.offset = offset;
  1334. compressionInfo.size = size;
  1335. viewer = uncompress( compressionInfo );
  1336. offset.value += size;
  1337. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1338. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1339. if ( true_y >= height ) break;
  1340. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1341. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1342. for ( var x = 0; x < width; x ++ ) {
  1343. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1344. tmpOffset.value = idx * size_t;
  1345. var val = getValue( viewer, tmpOffset );
  1346. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1347. }
  1348. }
  1349. }
  1350. }
  1351. if ( this.type === THREE.UnsignedByteType ) {
  1352. let v, i, j;
  1353. const size = byteArray.length;
  1354. const RGBEArray = new Uint8Array( size );
  1355. for ( let h = 0; h < height; ++ h ) {
  1356. for ( let w = 0; w < width; ++ w ) {
  1357. i = h * width * 4 + w * 4;
  1358. j = ( height - 1 - h ) * width * 4 + w * 4;
  1359. const red = byteArray[ j ];
  1360. const green = byteArray[ j + 1 ];
  1361. const blue = byteArray[ j + 2 ];
  1362. v = ( red > green ) ? red : green;
  1363. v = ( blue > v ) ? blue : v;
  1364. if ( v < 1e-32 ) {
  1365. RGBEArray[ i ] = RGBEArray[ i + 1 ] = RGBEArray[ i + 2 ] = RGBEArray[ i + 3 ] = 0;
  1366. } else {
  1367. const res = frexp( v );
  1368. v = res[ 0 ] * 256 / v;
  1369. RGBEArray[ i ] = red * v;
  1370. RGBEArray[ i + 1 ] = green * v;
  1371. RGBEArray[ i + 2 ] = blue * v;
  1372. RGBEArray[ i + 3 ] = res[ 1 ] + 128;
  1373. }
  1374. }
  1375. }
  1376. byteArray = RGBEArray;
  1377. }
  1378. let format = ( this.type === THREE.UnsignedByteType ) ? THREE.RGBEFormat : ( numChannels === 4 ) ? THREE.RGBAFormat : THREE.RGBFormat;
  1379. return {
  1380. header: EXRHeader,
  1381. width: width,
  1382. height: height,
  1383. data: byteArray,
  1384. format: format,
  1385. type: this.type
  1386. };
  1387. },
  1388. setDataType: function ( value ) {
  1389. this.type = value;
  1390. return this;
  1391. },
  1392. load: function ( url, onLoad, onProgress, onError ) {
  1393. function onLoadCallback( texture, texData ) {
  1394. switch ( texture.type ) {
  1395. case THREE.UnsignedByteType:
  1396. texture.encoding = THREE.RGBEEncoding;
  1397. texture.minFilter = THREE.NearestFilter;
  1398. texture.magFilter = THREE.NearestFilter;
  1399. texture.generateMipmaps = false;
  1400. texture.flipY = true;
  1401. break;
  1402. case THREE.FloatType:
  1403. case THREE.HalfFloatType:
  1404. texture.encoding = THREE.LinearEncoding;
  1405. texture.minFilter = THREE.LinearFilter;
  1406. texture.magFilter = THREE.LinearFilter;
  1407. texture.generateMipmaps = false;
  1408. texture.flipY = false;
  1409. break;
  1410. }
  1411. if ( onLoad ) onLoad( texture, texData );
  1412. }
  1413. return THREE.DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1414. }
  1415. } );