123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- /**
- * @author Almar Klein / http://almarklein.org
- *
- * Shaders to render 3D volumes using raycasting.
- * The applied techniques are based on similar implementations in the Visvis and Vispy projects.
- * This is not the only approach, therefore it's marked 1.
- */
- THREE.VolumeRenderShader1 = {
- uniforms: {
- "u_size": { value: new THREE.Vector3( 1, 1, 1 ) },
- "u_renderstyle": { value: 0 },
- "u_renderthreshold": { value: 0.5 },
- "u_clim": { value: new THREE.Vector2( 1, 1 ) },
- "u_data": { value: null },
- "u_cmdata": { value: null }
- },
- vertexShader: [
- " varying vec4 v_nearpos;",
- " varying vec4 v_farpos;",
- " varying vec3 v_position;",
- " mat4 inversemat(mat4 m) {",
- // Taken from https://github.com/stackgl/glsl-inverse/blob/master/index.glsl
- // This function is licenced by the MIT license to Mikola Lysenko
- " float",
- " a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],",
- " a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],",
- " a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],",
- " a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],",
- " b00 = a00 * a11 - a01 * a10,",
- " b01 = a00 * a12 - a02 * a10,",
- " b02 = a00 * a13 - a03 * a10,",
- " b03 = a01 * a12 - a02 * a11,",
- " b04 = a01 * a13 - a03 * a11,",
- " b05 = a02 * a13 - a03 * a12,",
- " b06 = a20 * a31 - a21 * a30,",
- " b07 = a20 * a32 - a22 * a30,",
- " b08 = a20 * a33 - a23 * a30,",
- " b09 = a21 * a32 - a22 * a31,",
- " b10 = a21 * a33 - a23 * a31,",
- " b11 = a22 * a33 - a23 * a32,",
- " det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;",
- " return mat4(",
- " a11 * b11 - a12 * b10 + a13 * b09,",
- " a02 * b10 - a01 * b11 - a03 * b09,",
- " a31 * b05 - a32 * b04 + a33 * b03,",
- " a22 * b04 - a21 * b05 - a23 * b03,",
- " a12 * b08 - a10 * b11 - a13 * b07,",
- " a00 * b11 - a02 * b08 + a03 * b07,",
- " a32 * b02 - a30 * b05 - a33 * b01,",
- " a20 * b05 - a22 * b02 + a23 * b01,",
- " a10 * b10 - a11 * b08 + a13 * b06,",
- " a01 * b08 - a00 * b10 - a03 * b06,",
- " a30 * b04 - a31 * b02 + a33 * b00,",
- " a21 * b02 - a20 * b04 - a23 * b00,",
- " a11 * b07 - a10 * b09 - a12 * b06,",
- " a00 * b09 - a01 * b07 + a02 * b06,",
- " a31 * b01 - a30 * b03 - a32 * b00,",
- " a20 * b03 - a21 * b01 + a22 * b00) / det;",
- " }",
- " void main() {",
- // Prepare transforms to map to "camera view". See also:
- // https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
- " mat4 viewtransformf = viewMatrix;",
- " mat4 viewtransformi = inversemat(viewMatrix);",
- // Project local vertex coordinate to camera position. Then do a step
- // backward (in cam coords) to the near clipping plane, and project back. Do
- // the same for the far clipping plane. This gives us all the information we
- // need to calculate the ray and truncate it to the viewing cone.
- " vec4 position4 = vec4(position, 1.0);",
- " vec4 pos_in_cam = viewtransformf * position4;",
- // Intersection of ray and near clipping plane (z = -1 in clip coords)
- " pos_in_cam.z = -pos_in_cam.w;",
- " v_nearpos = viewtransformi * pos_in_cam;",
- // Intersection of ray and far clipping plane (z = +1 in clip coords)
- " pos_in_cam.z = pos_in_cam.w;",
- " v_farpos = viewtransformi * pos_in_cam;",
- // Set varyings and output pos
- " v_position = position;",
- " gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;",
- " }",
- ].join( "\n" ),
- fragmentShader: [
- " precision highp float;",
- " precision mediump sampler3D;",
- " uniform vec3 u_size;",
- " uniform int u_renderstyle;",
- " uniform float u_renderthreshold;",
- " uniform vec2 u_clim;",
- " uniform sampler3D u_data;",
- " uniform sampler2D u_cmdata;",
- " varying vec3 v_position;",
- " varying vec4 v_nearpos;",
- " varying vec4 v_farpos;",
- // The maximum distance through our rendering volume is sqrt(3).
- " const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3",
- " const int REFINEMENT_STEPS = 4;",
- " const float relative_step_size = 1.0;",
- " const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);",
- " const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);",
- " const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);",
- " const float shininess = 40.0;",
- " void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);",
- " void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);",
- " float sample1(vec3 texcoords);",
- " vec4 apply_colormap(float val);",
- " vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);",
- " void main() {",
- // Normalize clipping plane info
- " vec3 farpos = v_farpos.xyz / v_farpos.w;",
- " vec3 nearpos = v_nearpos.xyz / v_nearpos.w;",
- // Calculate unit vector pointing in the view direction through this fragment.
- " vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);",
- // Compute the (negative) distance to the front surface or near clipping plane.
- // v_position is the back face of the cuboid, so the initial distance calculated in the dot
- // product below is the distance from near clip plane to the back of the cuboid
- " float distance = dot(nearpos - v_position, view_ray);",
- " distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,",
- " (u_size.x - 0.5 - v_position.x) / view_ray.x));",
- " distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,",
- " (u_size.y - 0.5 - v_position.y) / view_ray.y));",
- " distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,",
- " (u_size.z - 0.5 - v_position.z) / view_ray.z));",
- // Now we have the starting position on the front surface
- " vec3 front = v_position + view_ray * distance;",
- // Decide how many steps to take
- " int nsteps = int(-distance / relative_step_size + 0.5);",
- " if ( nsteps < 1 )",
- " discard;",
- // Get starting location and step vector in texture coordinates
- " vec3 step = ((v_position - front) / u_size) / float(nsteps);",
- " vec3 start_loc = front / u_size;",
- // For testing: show the number of steps. This helps to establish
- // whether the rays are correctly oriented
- //'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
- //'return;',
- " if (u_renderstyle == 0)",
- " cast_mip(start_loc, step, nsteps, view_ray);",
- " else if (u_renderstyle == 1)",
- " cast_iso(start_loc, step, nsteps, view_ray);",
- " if (gl_FragColor.a < 0.05)",
- " discard;",
- " }",
- " float sample1(vec3 texcoords) {",
- " /* Sample float value from a 3D texture. Assumes intensity data. */",
- " return texture(u_data, texcoords.xyz).r;",
- " }",
- " vec4 apply_colormap(float val) {",
- " val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);",
- " return texture2D(u_cmdata, vec2(val, 0.5));",
- " }",
- " void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {",
- " float max_val = -1e6;",
- " int max_i = 100;",
- " vec3 loc = start_loc;",
- // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
- // non-constant expression. So we use a hard-coded max, and an additional condition
- // inside the loop.
- " for (int iter=0; iter<MAX_STEPS; iter++) {",
- " if (iter >= nsteps)",
- " break;",
- // Sample from the 3D texture
- " float val = sample1(loc);",
- // Apply MIP operation
- " if (val > max_val) {",
- " max_val = val;",
- " max_i = iter;",
- " }",
- // Advance location deeper into the volume
- " loc += step;",
- " }",
- // Refine location, gives crispier images
- " vec3 iloc = start_loc + step * (float(max_i) - 0.5);",
- " vec3 istep = step / float(REFINEMENT_STEPS);",
- " for (int i=0; i<REFINEMENT_STEPS; i++) {",
- " max_val = max(max_val, sample1(iloc));",
- " iloc += istep;",
- " }",
- // Resolve final color
- " gl_FragColor = apply_colormap(max_val);",
- " }",
- " void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {",
- " gl_FragColor = vec4(0.0); // init transparent",
- " vec4 color3 = vec4(0.0); // final color",
- " vec3 dstep = 1.5 / u_size; // step to sample derivative",
- " vec3 loc = start_loc;",
- " float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);",
- // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
- // non-constant expression. So we use a hard-coded max, and an additional condition
- // inside the loop.
- " for (int iter=0; iter<MAX_STEPS; iter++) {",
- " if (iter >= nsteps)",
- " break;",
- // Sample from the 3D texture
- " float val = sample1(loc);",
- " if (val > low_threshold) {",
- // Take the last interval in smaller steps
- " vec3 iloc = loc - 0.5 * step;",
- " vec3 istep = step / float(REFINEMENT_STEPS);",
- " for (int i=0; i<REFINEMENT_STEPS; i++) {",
- " val = sample1(iloc);",
- " if (val > u_renderthreshold) {",
- " gl_FragColor = add_lighting(val, iloc, dstep, view_ray);",
- " return;",
- " }",
- " iloc += istep;",
- " }",
- " }",
- // Advance location deeper into the volume
- " loc += step;",
- " }",
- " }",
- " vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)",
- " {",
- // Calculate color by incorporating lighting
- // View direction
- " vec3 V = normalize(view_ray);",
- // calculate normal vector from gradient
- " vec3 N;",
- " float val1, val2;",
- " val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));",
- " val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));",
- " N[0] = val1 - val2;",
- " val = max(max(val1, val2), val);",
- " val1 = sample1(loc + vec3(0.0, -step[1], 0.0));",
- " val2 = sample1(loc + vec3(0.0, +step[1], 0.0));",
- " N[1] = val1 - val2;",
- " val = max(max(val1, val2), val);",
- " val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));",
- " val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));",
- " N[2] = val1 - val2;",
- " val = max(max(val1, val2), val);",
- " float gm = length(N); // gradient magnitude",
- " N = normalize(N);",
- // Flip normal so it points towards viewer
- " float Nselect = float(dot(N, V) > 0.0);",
- " N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;",
- // Init colors
- " vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);",
- " vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);",
- " vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);",
- // note: could allow multiple lights
- " for (int i=0; i<1; i++)",
- " {",
- // Get light direction (make sure to prevent zero devision)
- " vec3 L = normalize(view_ray); //lightDirs[i];",
- " float lightEnabled = float( length(L) > 0.0 );",
- " L = normalize(L + (1.0 - lightEnabled));",
- // Calculate lighting properties
- " float lambertTerm = clamp(dot(N, L), 0.0, 1.0);",
- " vec3 H = normalize(L+V); // Halfway vector",
- " float specularTerm = pow(max(dot(H, N), 0.0), shininess);",
- // Calculate mask
- " float mask1 = lightEnabled;",
- // Calculate colors
- " ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;",
- " diffuse_color += mask1 * lambertTerm;",
- " specular_color += mask1 * specularTerm * specular_color;",
- " }",
- // Calculate final color by componing different components
- " vec4 final_color;",
- " vec4 color = apply_colormap(val);",
- " final_color = color * (ambient_color + diffuse_color) + specular_color;",
- " final_color.a = color.a;",
- " return final_color;",
- " }",
- ].join( "\n" )
- };
|