| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461 | /* *	@author zz85 / http://twitter.com/blurspline / http://www.lab4games.net/zz85/blog * *	Simplification Geometry Modifier *    - based on code and technique *	  - by Stan Melax in 1998 *	  - Progressive Mesh type Polygon Reduction Algorithm *    - http://www.melax.com/polychop/ */THREE.SimplifyModifier = function() {};(function() {	var cb = new THREE.Vector3(), ab = new THREE.Vector3();	function pushIfUnique( array, object ) {		if ( array.indexOf( object ) === -1 ) array.push( object );	}	function removeFromArray( array, object ) {		var k = array.indexOf( object );		if ( k > -1 ) array.splice( k, 1 );	}	function computeEdgeCollapseCost( u, v ) {		// if we collapse edge uv by moving u to v then how		// much different will the model change, i.e. the "error".		var edgelength = v.position.distanceTo( u.position );		var curvature = 0;		var sideFaces = [];		var i, uFaces = u.faces, il = u.faces.length, face, sideFace;		// find the "sides" triangles that are on the edge uv		for ( i = 0 ; i < il; i ++ ) {			face = u.faces[ i ];			if ( face.hasVertex(v) ) {				sideFaces.push( face );			}		}		// use the triangle facing most away from the sides		// to determine our curvature term		for ( i = 0 ; i < il; i ++ ) {			var minCurvature = 1;			face = u.faces[ i ];			for( var j = 0; j < sideFaces.length; j ++ ) {				sideFace = sideFaces[ j ];				// use dot product of face normals.				var dotProd = face.normal.dot( sideFace.normal );				minCurvature = Math.min( minCurvature, ( 1.001 - dotProd ) / 2);			}			curvature = Math.max( curvature, minCurvature );		}		// crude approach in attempt to preserve borders		// though it seems not to be totally correct		var borders = 0;		if ( sideFaces.length < 2 ) {			// we add some arbitrary cost for borders,			// borders += 10;			curvature = 1;		}		var amt = edgelength * curvature + borders;		return amt;	}	function computeEdgeCostAtVertex( v ) {		// compute the edge collapse cost for all edges that start		// from vertex v.  Since we are only interested in reducing		// the object by selecting the min cost edge at each step, we		// only cache the cost of the least cost edge at this vertex		// (in member variable collapse) as well as the value of the		// cost (in member variable collapseCost).		if ( v.neighbors.length === 0 ) {			// collapse if no neighbors.			v.collapseNeighbor = null;			v.collapseCost = - 0.01;			return;		}		v.collapseCost = 100000;		v.collapseNeighbor = null;		// search all neighboring edges for "least cost" edge		for ( var i = 0; i < v.neighbors.length; i ++ ) {			var collapseCost = computeEdgeCollapseCost( v, v.neighbors[ i ] );			if ( !v.collapseNeighbor ) {				v.collapseNeighbor = v.neighbors[ i ];				v.collapseCost = collapseCost;				v.minCost = collapseCost;				v.totalCost = 0;				v.costCount = 0;			}			v.costCount ++;			v.totalCost += collapseCost;			if ( collapseCost < v.minCost ) {				v.collapseNeighbor = v.neighbors[ i ];				v.minCost = collapseCost;			}		}		// we average the cost of collapsing at this vertex		v.collapseCost = v.totalCost / v.costCount;		// v.collapseCost = v.minCost;	}	function removeVertex( v, vertices ) {		console.assert( v.faces.length === 0 );		while ( v.neighbors.length ) {			var n = v.neighbors.pop();			removeFromArray( n.neighbors, v );		}		removeFromArray( vertices, v );	}	function removeFace( f, faces ) {		removeFromArray( faces, f );		if ( f.v1 ) removeFromArray( f.v1.faces, f );		if ( f.v2 ) removeFromArray( f.v2.faces, f );		if ( f.v3 ) removeFromArray( f.v3.faces, f );		// TODO optimize this!		var vs = [ this.v1, this.v2, this.v3 ];		var v1, v2;		for( var i = 0 ; i < 3 ; i ++ ) {			v1 = vs[ i ];			v2 = vs[( i+1) % 3 ];			if( !v1 || !v2 ) continue;			v1.removeIfNonNeighbor( v2 );			v2.removeIfNonNeighbor( v1 );		}	}	function collapse( vertices, faces, u, v ) { // u and v are pointers to vertices of an edge		// Collapse the edge uv by moving vertex u onto v		if ( !v ) {			// u is a vertex all by itself so just delete it..			removeVertex( u, vertices );			return;		}		var i;		var tmpVertices = [];		for( i = 0 ; i < u.neighbors.length; i ++ ) {			tmpVertices.push( u.neighbors[ i ] );		}		// delete triangles on edge uv:		for( i = u.faces.length - 1; i >= 0; i -- ) {			if ( u.faces[ i ].hasVertex( v ) ) {				removeFace( u.faces[ i ], faces );			}		}		// update remaining triangles to have v instead of u		for( i = u.faces.length -1 ; i >= 0; i -- ) {			u.faces[i].replaceVertex( u, v );		}		removeVertex( u, vertices );		// recompute the edge collapse costs in neighborhood		for( i = 0; i < tmpVertices.length; i ++ ) {			computeEdgeCostAtVertex( tmpVertices[ i ] );		}	}	function minimumCostEdge( vertices ) {		// O(n * n) approach. TODO optimize this		var least = vertices[ 0 ];		for (var i = 0; i < vertices.length; i ++ ) {			if ( vertices[ i ].collapseCost < least.collapseCost ) {				least = vertices[ i ];			}		}		return least;	}	// we use a triangle class to represent structure of face slightly differently	function Triangle( v1, v2, v3, a, b, c ) {		this.a = a;		this.b = b;		this.c = c;		this.v1 = v1;		this.v2 = v2;		this.v3 = v3;		this.normal = new THREE.Vector3();		this.computeNormal();		v1.faces.push( this );		v1.addUniqueNeighbor( v2 );		v1.addUniqueNeighbor( v3 );		v2.faces.push( this );		v2.addUniqueNeighbor( v1 );		v2.addUniqueNeighbor( v3 );		v3.faces.push( this );		v3.addUniqueNeighbor( v1 );		v3.addUniqueNeighbor( v2 );	}	Triangle.prototype.computeNormal = function() {		var vA = this.v1.position;		var vB = this.v2.position;		var vC = this.v3.position;		cb.subVectors( vC, vB );		ab.subVectors( vA, vB );		cb.cross( ab ).normalize();		this.normal.copy( cb );	};	Triangle.prototype.hasVertex = function( v ) {		return v === this.v1 || v === this.v2 || v === this.v3;	};	Triangle.prototype.replaceVertex = function( oldv, newv ) {		if ( oldv === this.v1 ) this.v1 = newv;		else if ( oldv === this.v2 ) this.v2 = newv;		else if ( oldv === this.v3 ) this.v3 = newv;		removeFromArray( oldv.faces, this );		newv.faces.push( this );		oldv.removeIfNonNeighbor( this.v1 );		this.v1.removeIfNonNeighbor( oldv );		oldv.removeIfNonNeighbor( this.v2 );		this.v2.removeIfNonNeighbor( oldv );		oldv.removeIfNonNeighbor( this.v3 );		this.v3.removeIfNonNeighbor( oldv );		this.v1.addUniqueNeighbor( this.v2 );		this.v1.addUniqueNeighbor( this.v3 );		this.v2.addUniqueNeighbor( this.v1 );		this.v2.addUniqueNeighbor( this.v3 );		this.v3.addUniqueNeighbor( this.v1 );		this.v3.addUniqueNeighbor( this.v2 );		this.computeNormal();	};	function Vertex( v, id ) {		this.position = v;		this.id = id; // old index id		this.faces = []; // faces vertex is connected		this.neighbors = []; // neighbouring vertices aka "adjacentVertices"		// these will be computed in computeEdgeCostAtVertex()		this.collapseCost = 0; // cost of collapsing this vertex, the less the better. aka objdist		this.collapseNeighbor = null; // best candinate for collapsing	}	Vertex.prototype.addUniqueNeighbor = function( vertex ) {		pushIfUnique(this.neighbors, vertex);	};	Vertex.prototype.removeIfNonNeighbor = function( n ) {		var neighbors = this.neighbors;		var faces = this.faces;		var offset = neighbors.indexOf( n );		if ( offset === -1 ) return;		for ( var i = 0; i < faces.length; i ++ ) {			if ( faces[ i ].hasVertex( n ) ) return;		}		neighbors.splice( offset, 1 );	};	THREE.SimplifyModifier.prototype.modify = function( geometry, count ) {		if ( geometry instanceof THREE.BufferGeometry && !geometry.vertices && !geometry.faces ) {			console.log('converting BufferGeometry to Geometry');			geometry = new THREE.Geometry().fromBufferGeometry( geometry );		}		geometry.mergeVertices();		var oldVertices = geometry.vertices; // Three Position		var oldFaces = geometry.faces; // Three Face		var newGeometry = new THREE.Geometry();		// conversion		var vertices = new Array( oldVertices.length ); // Simplify Custom Vertex Struct		var faces = new Array( oldFaces.length ); // Simplify Custom Traignle Struct		var i, il, face;		//		// put data of original geometry in different data structures		//		// add vertices		for ( i = 0, il = oldVertices.length; i < il; i ++ ) {			vertices[ i ] = new Vertex( oldVertices[ i ], i );		}		// add faces		for ( i = 0, il = oldFaces.length; i < il; i ++ ) {			face = oldFaces[ i ];			faces[ i ] = new Triangle( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ], face.a, face.b, face.c );		}		// compute all edge collapse costs		for ( i = 0, il = vertices.length; i < il; i ++ ) {			computeEdgeCostAtVertex( vertices[ i ] );		}		var permutation = new Array( vertices.length );		var map = new Array( vertices.length );		var nextVertex;		var z = count;		// console.time('z')		// console.profile('zz');		while( z-- ) {			nextVertex = minimumCostEdge( vertices );			if (!nextVertex) {				console.log('no next vertex');				break;			}			collapse( vertices, faces, nextVertex, nextVertex.collapseNeighbor );		}		// console.profileEnd('zz');		// console.timeEnd('z')		// TODO convert to buffer geometry.		var newGeo = new THREE.Geometry();		for ( i = 0; i < vertices.length; i ++ ) {			var v = vertices[ i ];			newGeo.vertices.push( v.position )		}		for ( i = 0; i < faces.length; i ++ ) {			var tri = faces[ i ];			newGeo.faces.push( new THREE.Face3(				vertices.indexOf(tri.v1),				vertices.indexOf(tri.v2),				vertices.indexOf(tri.v3)			) )		}		return newGeo;	};})();
 |