| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 | /**** Manual Multi-Sample Anti-Aliasing Render Pass** @author bhouston / http://clara.io/** This manual approach to MSAA re-renders the scene ones for each sample with camera jitter and accumulates the results.** References: https://en.wikipedia.org/wiki/Multisample_anti-aliasing**/THREE.ManualMSAARenderPass = function ( scene, camera, clearColor, clearAlpha ) {	THREE.Pass.call( this );	this.scene = scene;	this.camera = camera;	this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16.	this.unbiased = true;	// as we need to clear the buffer in this pass, clearColor must be set to something, defaults to black.	this.clearColor = ( clearColor !== undefined ) ? clearColor : 0x000000;	this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0;	if ( THREE.CopyShader === undefined ) console.error( "THREE.ManualMSAARenderPass relies on THREE.CopyShader" );	var copyShader = THREE.CopyShader;	this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );	this.copyMaterial = new THREE.ShaderMaterial(	{		uniforms: this.copyUniforms,		vertexShader: copyShader.vertexShader,		fragmentShader: copyShader.fragmentShader,		premultipliedAlpha: true,		transparent: true,		blending: THREE.AdditiveBlending,		depthTest: false,		depthWrite: false	} );	this.camera2 = new THREE.OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );	this.scene2	= new THREE.Scene();	this.quad2 = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), this.copyMaterial );	this.scene2.add( this.quad2 );};THREE.ManualMSAARenderPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {	constructor: THREE.ManualMSAARenderPass,	dispose: function() {		if ( this.sampleRenderTarget ) {			this.sampleRenderTarget.dispose();			this.sampleRenderTarget = null;		}	},	setSize: function ( width, height ) {		if ( this.sampleRenderTarget )	this.sampleRenderTarget.setSize( width, height );	},	render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) {		if ( ! this.sampleRenderTarget ) {			this.sampleRenderTarget = new THREE.WebGLRenderTarget( readBuffer.width, readBuffer.height,				{ minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat } );		}		var jitterOffsets = THREE.ManualMSAARenderPass.JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ];		var autoClear = renderer.autoClear;		renderer.autoClear = false;		var oldClearColor = renderer.getClearColor().getHex();		var oldClearAlpha = renderer.getClearAlpha();		var baseSampleWeight = 1.0 / jitterOffsets.length;		var roundingRange = 1 / 32;		this.copyUniforms[ "tDiffuse" ].value = this.sampleRenderTarget.texture;		var width = readBuffer.width, height = readBuffer.height;		// render the scene multiple times, each slightly jitter offset from the last and accumulate the results.		for ( var i = 0; i < jitterOffsets.length; i ++ ) {			var jitterOffset = jitterOffsets[i];			if ( this.camera.setViewOffset ) {				this.camera.setViewOffset( width, height,					jitterOffset[ 0 ] * 0.0625, jitterOffset[ 1 ] * 0.0625,   // 0.0625 = 1 / 16					width, height );			}			var sampleWeight = baseSampleWeight;			if( this.unbiased ) {				// the theory is that equal weights for each sample lead to an accumulation of rounding errors.				// The following equation varies the sampleWeight per sample so that it is uniformly distributed				// across a range of values whose rounding errors cancel each other out.				var uniformCenteredDistribution = ( -0.5 + ( i + 0.5 ) / jitterOffsets.length );				sampleWeight += roundingRange * uniformCenteredDistribution;			}			this.copyUniforms[ "opacity" ].value = sampleWeight;			renderer.setClearColor( this.clearColor, this.clearAlpha );			renderer.render( this.scene, this.camera, this.sampleRenderTarget, true );			if (i === 0) {				renderer.setClearColor( 0x000000, 0.0 );			}			renderer.render( this.scene2, this.camera2, this.renderToScreen ? null : writeBuffer, (i === 0) );		}		if ( this.camera.clearViewOffset ) this.camera.clearViewOffset();		renderer.autoClear = autoClear;		renderer.setClearColor( oldClearColor, oldClearAlpha );	}} );// These jitter vectors are specified in integers because it is easier.// I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5)// before being used, thus these integers need to be scaled by 1/16.//// Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396THREE.ManualMSAARenderPass.JitterVectors = [	[		[ 0, 0 ]	],	[		[ 4, 4 ], [ - 4, - 4 ]	],	[		[ - 2, - 6 ], [ 6, - 2 ], [ - 6, 2 ], [ 2, 6 ]	],	[		[ 1, - 3 ], [ - 1, 3 ], [ 5, 1 ], [ - 3, - 5 ],		[ - 5, 5 ], [ - 7, - 1 ], [ 3, 7 ], [ 7, - 7 ]	],	[		[ 1, 1 ], [ - 1, - 3 ], [ - 3, 2 ], [ 4, - 1 ],		[ - 5, - 2 ], [ 2, 5 ], [ 5, 3 ], [ 3, - 5 ],		[ - 2, 6 ], [ 0, - 7 ], [ - 4, - 6 ], [ - 6, 4 ],		[ - 8, 0 ], [ 7, - 4 ], [ 6, 7 ], [ - 7, - 8 ]	],	[		[ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ],		[ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ],		[ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ],		[ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ],		[ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ],		[ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ],		[ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ],		[ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ]	]];
 |