Matrix4.js 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. import { _Math } from './Math';
  2. import { Vector3 } from './Vector3';
  3. /**
  4. * @author mrdoob / http://mrdoob.com/
  5. * @author supereggbert / http://www.paulbrunt.co.uk/
  6. * @author philogb / http://blog.thejit.org/
  7. * @author jordi_ros / http://plattsoft.com
  8. * @author D1plo1d / http://github.com/D1plo1d
  9. * @author alteredq / http://alteredqualia.com/
  10. * @author mikael emtinger / http://gomo.se/
  11. * @author timknip / http://www.floorplanner.com/
  12. * @author bhouston / http://clara.io
  13. * @author WestLangley / http://github.com/WestLangley
  14. */
  15. function Matrix4() {
  16. this.elements = new Float32Array( [
  17. 1, 0, 0, 0,
  18. 0, 1, 0, 0,
  19. 0, 0, 1, 0,
  20. 0, 0, 0, 1
  21. ] );
  22. if ( arguments.length > 0 ) {
  23. console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
  24. }
  25. }
  26. Matrix4.prototype = {
  27. constructor: Matrix4,
  28. isMatrix4: true,
  29. set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
  30. var te = this.elements;
  31. te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
  32. te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
  33. te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
  34. te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
  35. return this;
  36. },
  37. identity: function () {
  38. this.set(
  39. 1, 0, 0, 0,
  40. 0, 1, 0, 0,
  41. 0, 0, 1, 0,
  42. 0, 0, 0, 1
  43. );
  44. return this;
  45. },
  46. clone: function () {
  47. return new Matrix4().fromArray( this.elements );
  48. },
  49. copy: function ( m ) {
  50. this.elements.set( m.elements );
  51. return this;
  52. },
  53. copyPosition: function ( m ) {
  54. var te = this.elements;
  55. var me = m.elements;
  56. te[ 12 ] = me[ 12 ];
  57. te[ 13 ] = me[ 13 ];
  58. te[ 14 ] = me[ 14 ];
  59. return this;
  60. },
  61. extractBasis: function ( xAxis, yAxis, zAxis ) {
  62. xAxis.setFromMatrixColumn( this, 0 );
  63. yAxis.setFromMatrixColumn( this, 1 );
  64. zAxis.setFromMatrixColumn( this, 2 );
  65. return this;
  66. },
  67. makeBasis: function ( xAxis, yAxis, zAxis ) {
  68. this.set(
  69. xAxis.x, yAxis.x, zAxis.x, 0,
  70. xAxis.y, yAxis.y, zAxis.y, 0,
  71. xAxis.z, yAxis.z, zAxis.z, 0,
  72. 0, 0, 0, 1
  73. );
  74. return this;
  75. },
  76. extractRotation: function () {
  77. var v1;
  78. return function extractRotation( m ) {
  79. if ( v1 === undefined ) v1 = new Vector3();
  80. var te = this.elements;
  81. var me = m.elements;
  82. var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
  83. var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
  84. var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();
  85. te[ 0 ] = me[ 0 ] * scaleX;
  86. te[ 1 ] = me[ 1 ] * scaleX;
  87. te[ 2 ] = me[ 2 ] * scaleX;
  88. te[ 4 ] = me[ 4 ] * scaleY;
  89. te[ 5 ] = me[ 5 ] * scaleY;
  90. te[ 6 ] = me[ 6 ] * scaleY;
  91. te[ 8 ] = me[ 8 ] * scaleZ;
  92. te[ 9 ] = me[ 9 ] * scaleZ;
  93. te[ 10 ] = me[ 10 ] * scaleZ;
  94. return this;
  95. };
  96. }(),
  97. makeRotationFromEuler: function ( euler ) {
  98. if ( (euler && euler.isEuler) === false ) {
  99. console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
  100. }
  101. var te = this.elements;
  102. var x = euler.x, y = euler.y, z = euler.z;
  103. var a = Math.cos( x ), b = Math.sin( x );
  104. var c = Math.cos( y ), d = Math.sin( y );
  105. var e = Math.cos( z ), f = Math.sin( z );
  106. if ( euler.order === 'XYZ' ) {
  107. var ae = a * e, af = a * f, be = b * e, bf = b * f;
  108. te[ 0 ] = c * e;
  109. te[ 4 ] = - c * f;
  110. te[ 8 ] = d;
  111. te[ 1 ] = af + be * d;
  112. te[ 5 ] = ae - bf * d;
  113. te[ 9 ] = - b * c;
  114. te[ 2 ] = bf - ae * d;
  115. te[ 6 ] = be + af * d;
  116. te[ 10 ] = a * c;
  117. } else if ( euler.order === 'YXZ' ) {
  118. var ce = c * e, cf = c * f, de = d * e, df = d * f;
  119. te[ 0 ] = ce + df * b;
  120. te[ 4 ] = de * b - cf;
  121. te[ 8 ] = a * d;
  122. te[ 1 ] = a * f;
  123. te[ 5 ] = a * e;
  124. te[ 9 ] = - b;
  125. te[ 2 ] = cf * b - de;
  126. te[ 6 ] = df + ce * b;
  127. te[ 10 ] = a * c;
  128. } else if ( euler.order === 'ZXY' ) {
  129. var ce = c * e, cf = c * f, de = d * e, df = d * f;
  130. te[ 0 ] = ce - df * b;
  131. te[ 4 ] = - a * f;
  132. te[ 8 ] = de + cf * b;
  133. te[ 1 ] = cf + de * b;
  134. te[ 5 ] = a * e;
  135. te[ 9 ] = df - ce * b;
  136. te[ 2 ] = - a * d;
  137. te[ 6 ] = b;
  138. te[ 10 ] = a * c;
  139. } else if ( euler.order === 'ZYX' ) {
  140. var ae = a * e, af = a * f, be = b * e, bf = b * f;
  141. te[ 0 ] = c * e;
  142. te[ 4 ] = be * d - af;
  143. te[ 8 ] = ae * d + bf;
  144. te[ 1 ] = c * f;
  145. te[ 5 ] = bf * d + ae;
  146. te[ 9 ] = af * d - be;
  147. te[ 2 ] = - d;
  148. te[ 6 ] = b * c;
  149. te[ 10 ] = a * c;
  150. } else if ( euler.order === 'YZX' ) {
  151. var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
  152. te[ 0 ] = c * e;
  153. te[ 4 ] = bd - ac * f;
  154. te[ 8 ] = bc * f + ad;
  155. te[ 1 ] = f;
  156. te[ 5 ] = a * e;
  157. te[ 9 ] = - b * e;
  158. te[ 2 ] = - d * e;
  159. te[ 6 ] = ad * f + bc;
  160. te[ 10 ] = ac - bd * f;
  161. } else if ( euler.order === 'XZY' ) {
  162. var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
  163. te[ 0 ] = c * e;
  164. te[ 4 ] = - f;
  165. te[ 8 ] = d * e;
  166. te[ 1 ] = ac * f + bd;
  167. te[ 5 ] = a * e;
  168. te[ 9 ] = ad * f - bc;
  169. te[ 2 ] = bc * f - ad;
  170. te[ 6 ] = b * e;
  171. te[ 10 ] = bd * f + ac;
  172. }
  173. // last column
  174. te[ 3 ] = 0;
  175. te[ 7 ] = 0;
  176. te[ 11 ] = 0;
  177. // bottom row
  178. te[ 12 ] = 0;
  179. te[ 13 ] = 0;
  180. te[ 14 ] = 0;
  181. te[ 15 ] = 1;
  182. return this;
  183. },
  184. makeRotationFromQuaternion: function ( q ) {
  185. var te = this.elements;
  186. var x = q.x, y = q.y, z = q.z, w = q.w;
  187. var x2 = x + x, y2 = y + y, z2 = z + z;
  188. var xx = x * x2, xy = x * y2, xz = x * z2;
  189. var yy = y * y2, yz = y * z2, zz = z * z2;
  190. var wx = w * x2, wy = w * y2, wz = w * z2;
  191. te[ 0 ] = 1 - ( yy + zz );
  192. te[ 4 ] = xy - wz;
  193. te[ 8 ] = xz + wy;
  194. te[ 1 ] = xy + wz;
  195. te[ 5 ] = 1 - ( xx + zz );
  196. te[ 9 ] = yz - wx;
  197. te[ 2 ] = xz - wy;
  198. te[ 6 ] = yz + wx;
  199. te[ 10 ] = 1 - ( xx + yy );
  200. // last column
  201. te[ 3 ] = 0;
  202. te[ 7 ] = 0;
  203. te[ 11 ] = 0;
  204. // bottom row
  205. te[ 12 ] = 0;
  206. te[ 13 ] = 0;
  207. te[ 14 ] = 0;
  208. te[ 15 ] = 1;
  209. return this;
  210. },
  211. lookAt: function () {
  212. var x, y, z;
  213. return function lookAt( eye, target, up ) {
  214. if ( x === undefined ) {
  215. x = new Vector3();
  216. y = new Vector3();
  217. z = new Vector3();
  218. }
  219. var te = this.elements;
  220. z.subVectors( eye, target ).normalize();
  221. if ( z.lengthSq() === 0 ) {
  222. z.z = 1;
  223. }
  224. x.crossVectors( up, z ).normalize();
  225. if ( x.lengthSq() === 0 ) {
  226. z.z += 0.0001;
  227. x.crossVectors( up, z ).normalize();
  228. }
  229. y.crossVectors( z, x );
  230. te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
  231. te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
  232. te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;
  233. return this;
  234. };
  235. }(),
  236. multiply: function ( m, n ) {
  237. if ( n !== undefined ) {
  238. console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
  239. return this.multiplyMatrices( m, n );
  240. }
  241. return this.multiplyMatrices( this, m );
  242. },
  243. premultiply: function ( m ) {
  244. return this.multiplyMatrices( m, this );
  245. },
  246. multiplyMatrices: function ( a, b ) {
  247. var ae = a.elements;
  248. var be = b.elements;
  249. var te = this.elements;
  250. var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
  251. var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
  252. var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
  253. var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
  254. var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
  255. var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
  256. var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
  257. var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
  258. te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
  259. te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
  260. te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
  261. te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
  262. te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
  263. te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
  264. te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
  265. te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
  266. te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
  267. te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
  268. te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
  269. te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
  270. te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
  271. te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
  272. te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
  273. te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
  274. return this;
  275. },
  276. multiplyToArray: function ( a, b, r ) {
  277. var te = this.elements;
  278. this.multiplyMatrices( a, b );
  279. r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ];
  280. r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ];
  281. r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ];
  282. r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ];
  283. return this;
  284. },
  285. multiplyScalar: function ( s ) {
  286. var te = this.elements;
  287. te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
  288. te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
  289. te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
  290. te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
  291. return this;
  292. },
  293. applyToVector3Array: function () {
  294. var v1;
  295. return function applyToVector3Array( array, offset, length ) {
  296. if ( v1 === undefined ) v1 = new Vector3();
  297. if ( offset === undefined ) offset = 0;
  298. if ( length === undefined ) length = array.length;
  299. for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) {
  300. v1.fromArray( array, j );
  301. v1.applyMatrix4( this );
  302. v1.toArray( array, j );
  303. }
  304. return array;
  305. };
  306. }(),
  307. applyToBuffer: function () {
  308. var v1;
  309. return function applyToBuffer( buffer, offset, length ) {
  310. if ( v1 === undefined ) v1 = new Vector3();
  311. if ( offset === undefined ) offset = 0;
  312. if ( length === undefined ) length = buffer.length / buffer.itemSize;
  313. for ( var i = 0, j = offset; i < length; i ++, j ++ ) {
  314. v1.x = buffer.getX( j );
  315. v1.y = buffer.getY( j );
  316. v1.z = buffer.getZ( j );
  317. v1.applyMatrix4( this );
  318. buffer.setXYZ( v1.x, v1.y, v1.z );
  319. }
  320. return buffer;
  321. };
  322. }(),
  323. determinant: function () {
  324. var te = this.elements;
  325. var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
  326. var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
  327. var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
  328. var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
  329. //TODO: make this more efficient
  330. //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
  331. return (
  332. n41 * (
  333. + n14 * n23 * n32
  334. - n13 * n24 * n32
  335. - n14 * n22 * n33
  336. + n12 * n24 * n33
  337. + n13 * n22 * n34
  338. - n12 * n23 * n34
  339. ) +
  340. n42 * (
  341. + n11 * n23 * n34
  342. - n11 * n24 * n33
  343. + n14 * n21 * n33
  344. - n13 * n21 * n34
  345. + n13 * n24 * n31
  346. - n14 * n23 * n31
  347. ) +
  348. n43 * (
  349. + n11 * n24 * n32
  350. - n11 * n22 * n34
  351. - n14 * n21 * n32
  352. + n12 * n21 * n34
  353. + n14 * n22 * n31
  354. - n12 * n24 * n31
  355. ) +
  356. n44 * (
  357. - n13 * n22 * n31
  358. - n11 * n23 * n32
  359. + n11 * n22 * n33
  360. + n13 * n21 * n32
  361. - n12 * n21 * n33
  362. + n12 * n23 * n31
  363. )
  364. );
  365. },
  366. transpose: function () {
  367. var te = this.elements;
  368. var tmp;
  369. tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
  370. tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
  371. tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
  372. tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
  373. tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
  374. tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
  375. return this;
  376. },
  377. flattenToArrayOffset: function ( array, offset ) {
  378. console.warn( "THREE.Matrix3: .flattenToArrayOffset is deprecated " +
  379. "- just use .toArray instead." );
  380. return this.toArray( array, offset );
  381. },
  382. getPosition: function () {
  383. var v1;
  384. return function getPosition() {
  385. if ( v1 === undefined ) v1 = new Vector3();
  386. console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
  387. return v1.setFromMatrixColumn( this, 3 );
  388. };
  389. }(),
  390. setPosition: function ( v ) {
  391. var te = this.elements;
  392. te[ 12 ] = v.x;
  393. te[ 13 ] = v.y;
  394. te[ 14 ] = v.z;
  395. return this;
  396. },
  397. getInverse: function ( m, throwOnDegenerate ) {
  398. // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
  399. var te = this.elements,
  400. me = m.elements,
  401. n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
  402. n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
  403. n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
  404. n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
  405. t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
  406. t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
  407. t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
  408. t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
  409. var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
  410. if ( det === 0 ) {
  411. var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0";
  412. if ( throwOnDegenerate === true ) {
  413. throw new Error( msg );
  414. } else {
  415. console.warn( msg );
  416. }
  417. return this.identity();
  418. }
  419. var detInv = 1 / det;
  420. te[ 0 ] = t11 * detInv;
  421. te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
  422. te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
  423. te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
  424. te[ 4 ] = t12 * detInv;
  425. te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
  426. te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
  427. te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
  428. te[ 8 ] = t13 * detInv;
  429. te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
  430. te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
  431. te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
  432. te[ 12 ] = t14 * detInv;
  433. te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
  434. te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
  435. te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
  436. return this;
  437. },
  438. scale: function ( v ) {
  439. var te = this.elements;
  440. var x = v.x, y = v.y, z = v.z;
  441. te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
  442. te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
  443. te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
  444. te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
  445. return this;
  446. },
  447. getMaxScaleOnAxis: function () {
  448. var te = this.elements;
  449. var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
  450. var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
  451. var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
  452. return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
  453. },
  454. makeTranslation: function ( x, y, z ) {
  455. this.set(
  456. 1, 0, 0, x,
  457. 0, 1, 0, y,
  458. 0, 0, 1, z,
  459. 0, 0, 0, 1
  460. );
  461. return this;
  462. },
  463. makeRotationX: function ( theta ) {
  464. var c = Math.cos( theta ), s = Math.sin( theta );
  465. this.set(
  466. 1, 0, 0, 0,
  467. 0, c, - s, 0,
  468. 0, s, c, 0,
  469. 0, 0, 0, 1
  470. );
  471. return this;
  472. },
  473. makeRotationY: function ( theta ) {
  474. var c = Math.cos( theta ), s = Math.sin( theta );
  475. this.set(
  476. c, 0, s, 0,
  477. 0, 1, 0, 0,
  478. - s, 0, c, 0,
  479. 0, 0, 0, 1
  480. );
  481. return this;
  482. },
  483. makeRotationZ: function ( theta ) {
  484. var c = Math.cos( theta ), s = Math.sin( theta );
  485. this.set(
  486. c, - s, 0, 0,
  487. s, c, 0, 0,
  488. 0, 0, 1, 0,
  489. 0, 0, 0, 1
  490. );
  491. return this;
  492. },
  493. makeRotationAxis: function ( axis, angle ) {
  494. // Based on http://www.gamedev.net/reference/articles/article1199.asp
  495. var c = Math.cos( angle );
  496. var s = Math.sin( angle );
  497. var t = 1 - c;
  498. var x = axis.x, y = axis.y, z = axis.z;
  499. var tx = t * x, ty = t * y;
  500. this.set(
  501. tx * x + c, tx * y - s * z, tx * z + s * y, 0,
  502. tx * y + s * z, ty * y + c, ty * z - s * x, 0,
  503. tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
  504. 0, 0, 0, 1
  505. );
  506. return this;
  507. },
  508. makeScale: function ( x, y, z ) {
  509. this.set(
  510. x, 0, 0, 0,
  511. 0, y, 0, 0,
  512. 0, 0, z, 0,
  513. 0, 0, 0, 1
  514. );
  515. return this;
  516. },
  517. compose: function ( position, quaternion, scale ) {
  518. this.makeRotationFromQuaternion( quaternion );
  519. this.scale( scale );
  520. this.setPosition( position );
  521. return this;
  522. },
  523. decompose: function () {
  524. var vector, matrix;
  525. return function decompose( position, quaternion, scale ) {
  526. if ( vector === undefined ) {
  527. vector = new Vector3();
  528. matrix = new Matrix4();
  529. }
  530. var te = this.elements;
  531. var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
  532. var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
  533. var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
  534. // if determine is negative, we need to invert one scale
  535. var det = this.determinant();
  536. if ( det < 0 ) {
  537. sx = - sx;
  538. }
  539. position.x = te[ 12 ];
  540. position.y = te[ 13 ];
  541. position.z = te[ 14 ];
  542. // scale the rotation part
  543. matrix.elements.set( this.elements ); // at this point matrix is incomplete so we can't use .copy()
  544. var invSX = 1 / sx;
  545. var invSY = 1 / sy;
  546. var invSZ = 1 / sz;
  547. matrix.elements[ 0 ] *= invSX;
  548. matrix.elements[ 1 ] *= invSX;
  549. matrix.elements[ 2 ] *= invSX;
  550. matrix.elements[ 4 ] *= invSY;
  551. matrix.elements[ 5 ] *= invSY;
  552. matrix.elements[ 6 ] *= invSY;
  553. matrix.elements[ 8 ] *= invSZ;
  554. matrix.elements[ 9 ] *= invSZ;
  555. matrix.elements[ 10 ] *= invSZ;
  556. quaternion.setFromRotationMatrix( matrix );
  557. scale.x = sx;
  558. scale.y = sy;
  559. scale.z = sz;
  560. return this;
  561. };
  562. }(),
  563. makeFrustum: function ( left, right, bottom, top, near, far ) {
  564. var te = this.elements;
  565. var x = 2 * near / ( right - left );
  566. var y = 2 * near / ( top - bottom );
  567. var a = ( right + left ) / ( right - left );
  568. var b = ( top + bottom ) / ( top - bottom );
  569. var c = - ( far + near ) / ( far - near );
  570. var d = - 2 * far * near / ( far - near );
  571. te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
  572. te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
  573. te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
  574. te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
  575. return this;
  576. },
  577. makePerspective: function ( fov, aspect, near, far ) {
  578. var ymax = near * Math.tan( _Math.DEG2RAD * fov * 0.5 );
  579. var ymin = - ymax;
  580. var xmin = ymin * aspect;
  581. var xmax = ymax * aspect;
  582. return this.makeFrustum( xmin, xmax, ymin, ymax, near, far );
  583. },
  584. makeOrthographic: function ( left, right, top, bottom, near, far ) {
  585. var te = this.elements;
  586. var w = 1.0 / ( right - left );
  587. var h = 1.0 / ( top - bottom );
  588. var p = 1.0 / ( far - near );
  589. var x = ( right + left ) * w;
  590. var y = ( top + bottom ) * h;
  591. var z = ( far + near ) * p;
  592. te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
  593. te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
  594. te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
  595. te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
  596. return this;
  597. },
  598. equals: function ( matrix ) {
  599. var te = this.elements;
  600. var me = matrix.elements;
  601. for ( var i = 0; i < 16; i ++ ) {
  602. if ( te[ i ] !== me[ i ] ) return false;
  603. }
  604. return true;
  605. },
  606. fromArray: function ( array, offset ) {
  607. if ( offset === undefined ) offset = 0;
  608. for( var i = 0; i < 16; i ++ ) {
  609. this.elements[ i ] = array[ i + offset ];
  610. }
  611. return this;
  612. },
  613. toArray: function ( array, offset ) {
  614. if ( array === undefined ) array = [];
  615. if ( offset === undefined ) offset = 0;
  616. var te = this.elements;
  617. array[ offset ] = te[ 0 ];
  618. array[ offset + 1 ] = te[ 1 ];
  619. array[ offset + 2 ] = te[ 2 ];
  620. array[ offset + 3 ] = te[ 3 ];
  621. array[ offset + 4 ] = te[ 4 ];
  622. array[ offset + 5 ] = te[ 5 ];
  623. array[ offset + 6 ] = te[ 6 ];
  624. array[ offset + 7 ] = te[ 7 ];
  625. array[ offset + 8 ] = te[ 8 ];
  626. array[ offset + 9 ] = te[ 9 ];
  627. array[ offset + 10 ] = te[ 10 ];
  628. array[ offset + 11 ] = te[ 11 ];
  629. array[ offset + 12 ] = te[ 12 ];
  630. array[ offset + 13 ] = te[ 13 ];
  631. array[ offset + 14 ] = te[ 14 ];
  632. array[ offset + 15 ] = te[ 15 ];
  633. return array;
  634. }
  635. };
  636. export { Matrix4 };