GPUParticleSystem.js 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /*
  2. * GPU Particle System
  3. * @author flimshaw - Charlie Hoey - http://charliehoey.com
  4. *
  5. * A simple to use, general purpose GPU system. Particles are spawn-and-forget with
  6. * several options available, and do not require monitoring or cleanup after spawning.
  7. * Because the paths of all particles are completely deterministic once spawned, the scale
  8. * and direction of time is also variable.
  9. *
  10. * Currently uses a static wrapping perlin noise texture for turbulence, and a small png texture for
  11. * particles, but adding support for a particle texture atlas or changing to a different type of turbulence
  12. * would be a fairly light day's work.
  13. *
  14. * Shader and javascript packing code derrived from several Stack Overflow examples.
  15. *
  16. */
  17. THREE.GPUParticleSystem = function(options) {
  18. var self = this;
  19. var options = options || {};
  20. // parse options and use defaults
  21. self.PARTICLE_COUNT = options.maxParticles || 1000000;
  22. self.PARTICLE_CONTAINERS = options.containerCount || 1;
  23. self.PARTICLES_PER_CONTAINER = Math.ceil(self.PARTICLE_COUNT / self.PARTICLE_CONTAINERS);
  24. self.PARTICLE_CURSOR = 0;
  25. self.time = 0;
  26. // Custom vertex and fragement shader
  27. var GPUParticleShader = {
  28. vertexShader: [
  29. 'precision highp float;',
  30. 'const vec4 bitSh = vec4(256. * 256. * 256., 256. * 256., 256., 1.);',
  31. 'const vec4 bitMsk = vec4(0.,vec3(1./256.0));',
  32. 'const vec4 bitShifts = vec4(1.) / bitSh;',
  33. '#define FLOAT_MAX 1.70141184e38',
  34. '#define FLOAT_MIN 1.17549435e-38',
  35. 'lowp vec4 encode_float(highp float v) {',
  36. 'highp float av = abs(v);',
  37. '//Handle special cases',
  38. 'if(av < FLOAT_MIN) {',
  39. 'return vec4(0.0, 0.0, 0.0, 0.0);',
  40. '} else if(v > FLOAT_MAX) {',
  41. 'return vec4(127.0, 128.0, 0.0, 0.0) / 255.0;',
  42. '} else if(v < -FLOAT_MAX) {',
  43. 'return vec4(255.0, 128.0, 0.0, 0.0) / 255.0;',
  44. '}',
  45. 'highp vec4 c = vec4(0,0,0,0);',
  46. '//Compute exponent and mantissa',
  47. 'highp float e = floor(log2(av));',
  48. 'highp float m = av * pow(2.0, -e) - 1.0;',
  49. //Unpack mantissa
  50. 'c[1] = floor(128.0 * m);',
  51. 'm -= c[1] / 128.0;',
  52. 'c[2] = floor(32768.0 * m);',
  53. 'm -= c[2] / 32768.0;',
  54. 'c[3] = floor(8388608.0 * m);',
  55. '//Unpack exponent',
  56. 'highp float ebias = e + 127.0;',
  57. 'c[0] = floor(ebias / 2.0);',
  58. 'ebias -= c[0] * 2.0;',
  59. 'c[1] += floor(ebias) * 128.0;',
  60. '//Unpack sign bit',
  61. 'c[0] += 128.0 * step(0.0, -v);',
  62. '//Scale back to range',
  63. 'return c / 255.0;',
  64. '}',
  65. 'vec4 pack(const in float depth)',
  66. '{',
  67. 'const vec4 bit_shift = vec4(256.0*256.0*256.0, 256.0*256.0, 256.0, 1.0);',
  68. 'const vec4 bit_mask = vec4(0.0, 1.0/256.0, 1.0/256.0, 1.0/256.0);',
  69. 'vec4 res = fract(depth * bit_shift);',
  70. 'res -= res.xxyz * bit_mask;',
  71. 'return res;',
  72. '}',
  73. 'float unpack(const in vec4 rgba_depth)',
  74. '{',
  75. 'const vec4 bit_shift = vec4(1.0/(256.0*256.0*256.0), 1.0/(256.0*256.0), 1.0/256.0, 1.0);',
  76. 'float depth = dot(rgba_depth, bit_shift);',
  77. 'return depth;',
  78. '}',
  79. 'uniform float uTime;',
  80. 'uniform float uScale;',
  81. 'uniform sampler2D tNoise;',
  82. 'attribute vec4 particlePositionsStartTime;',
  83. 'attribute vec4 particleVelColSizeLife;',
  84. 'varying vec4 vColor;',
  85. 'varying float lifeLeft;',
  86. 'void main() {',
  87. '// unpack things from our attributes',
  88. 'vColor = encode_float( particleVelColSizeLife.y );',
  89. '// convert our velocity back into a value we can use',
  90. 'vec4 velTurb = encode_float( particleVelColSizeLife.x );',
  91. 'vec3 velocity = vec3( velTurb.xyz );',
  92. 'float turbulence = velTurb.w;',
  93. 'vec3 newPosition;',
  94. 'float timeElapsed = uTime - particlePositionsStartTime.a;',
  95. 'lifeLeft = 1. - (timeElapsed / particleVelColSizeLife.w);',
  96. 'gl_PointSize = ( uScale * particleVelColSizeLife.z ) * lifeLeft;',
  97. 'velocity.x = ( velocity.x - .5 ) * 3.;',
  98. 'velocity.y = ( velocity.y - .5 ) * 3.;',
  99. 'velocity.z = ( velocity.z - .5 ) * 3.;',
  100. 'newPosition = particlePositionsStartTime.xyz + ( velocity * 10. ) * ( uTime - particlePositionsStartTime.a );',
  101. 'vec3 noise = texture2D( tNoise, vec2( newPosition.x * .015 + (uTime * .05), newPosition.y * .02 + (uTime * .015) )).rgb;',
  102. 'vec3 noiseVel = ( noise.rgb - .5 ) * 30.;',
  103. 'newPosition = mix(newPosition, newPosition + vec3(noiseVel * ( turbulence * 5. ) ), (timeElapsed / particleVelColSizeLife.a) );',
  104. 'if( velocity.y > 0. && velocity.y < .05 ) {',
  105. 'lifeLeft = 0.;',
  106. '}',
  107. 'if( velocity.x < -1.45 ) {',
  108. 'lifeLeft = 0.;',
  109. '}',
  110. 'if( timeElapsed > 0. ) {',
  111. 'gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 );',
  112. '} else {',
  113. 'gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );',
  114. 'lifeLeft = 0.;',
  115. 'gl_PointSize = 0.;',
  116. '}',
  117. '}'
  118. ].join("\n"),
  119. fragmentShader: [
  120. 'float scaleLinear(float value, vec2 valueDomain) {',
  121. 'return (value - valueDomain.x) / (valueDomain.y - valueDomain.x);',
  122. '}',
  123. 'float scaleLinear(float value, vec2 valueDomain, vec2 valueRange) {',
  124. 'return mix(valueRange.x, valueRange.y, scaleLinear(value, valueDomain));',
  125. '}',
  126. 'varying vec4 vColor;',
  127. 'varying float lifeLeft;',
  128. 'uniform sampler2D tSprite;',
  129. 'void main() {',
  130. 'float alpha = 0.;',
  131. 'if( lifeLeft > .995 ) {',
  132. 'alpha = scaleLinear( lifeLeft, vec2(1., .995), vec2(0., 1.));//mix( 0., 1., ( lifeLeft - .95 ) * 100. ) * .75;',
  133. '} else {',
  134. 'alpha = lifeLeft * .75;',
  135. '}',
  136. 'vec4 tex = texture2D( tSprite, gl_PointCoord );',
  137. 'gl_FragColor = vec4( vColor.rgb * tex.a, alpha * tex.a );',
  138. '}'
  139. ].join("\n")
  140. };
  141. // preload a million random numbers
  142. self.rand = [];
  143. for (var i = 1e5; i > 0; i--) {
  144. self.rand.push(Math.random() - .5);
  145. }
  146. self.random = function() {
  147. return ++i >= self.rand.length ? self.rand[i = 1] : self.rand[i];
  148. }
  149. self.particleNoiseTex = THREE.ImageUtils.loadTexture("textures/perlin-512.png");
  150. self.particleNoiseTex.wrapS = self.particleNoiseTex.wrapT = THREE.RepeatWrapping;
  151. self.particleSpriteTex = THREE.ImageUtils.loadTexture("textures/particle2.png");
  152. self.particleSpriteTex.wrapS = self.particleSpriteTex.wrapT = THREE.RepeatWrapping;
  153. self.particleShaderMat = new THREE.ShaderMaterial({
  154. transparent: true,
  155. depthWrite: false,
  156. uniforms: {
  157. "uTime": {
  158. type: "f",
  159. value: 0.0
  160. },
  161. "uScale": {
  162. type: "f",
  163. value: 1.0
  164. },
  165. "tNoise": {
  166. type: "t",
  167. value: self.particleNoiseTex
  168. },
  169. "tSprite": {
  170. type: "t",
  171. value: self.particleSpriteTex
  172. }
  173. },
  174. attributes: {
  175. "particlePositionsStartTime": {
  176. type: "v4",
  177. value: []
  178. },
  179. "particleVelColSizeLife": {
  180. type: "v4",
  181. value: []
  182. }
  183. },
  184. blending: THREE.AdditiveBlending,
  185. vertexShader: GPUParticleShader.vertexShader,
  186. fragmentShader: GPUParticleShader.fragmentShader
  187. });
  188. // define defaults for all values
  189. self.particleShaderMat.defaultAttributeValues.particlePositionsStartTime = [0, 0, 0, 0];
  190. self.particleShaderMat.defaultAttributeValues.particleVelColSizeLife = [0, 0, 0, 0];
  191. self.particleContainers = [];
  192. // extend Object3D
  193. THREE.Object3D.apply(this, arguments);
  194. this.init = function() {
  195. for (var i = 0; i < self.PARTICLE_CONTAINERS; i++) {
  196. var c = new THREE.GPUParticleContainer(self.PARTICLES_PER_CONTAINER, self);
  197. self.particleContainers.push(c);
  198. self.add(c);
  199. }
  200. }
  201. this.spawnParticle = function(options) {
  202. self.PARTICLE_CURSOR++;
  203. if (self.PARTICLE_CURSOR >= self.PARTICLE_COUNT) {
  204. self.PARTICLE_CURSOR = 1;
  205. }
  206. var currentContainer = self.particleContainers[Math.floor(self.PARTICLE_CURSOR / self.PARTICLES_PER_CONTAINER)];
  207. currentContainer.spawnParticle(options);
  208. }
  209. this.update = function(time) {
  210. for (var i = 0; i < self.PARTICLE_CONTAINERS; i++) {
  211. self.particleContainers[i].update(time);
  212. }
  213. };
  214. this.init();
  215. }
  216. THREE.GPUParticleSystem.prototype = Object.create(THREE.Object3D.prototype);
  217. THREE.GPUParticleSystem.prototype.constructor = THREE.GPUParticleSystem;
  218. // Subclass for particle containers, allows for very large arrays to be spread out
  219. THREE.GPUParticleContainer = function(maxParticles, particleSystem) {
  220. var self = this;
  221. self.PARTICLE_COUNT = maxParticles || 100000;
  222. self.PARTICLE_CURSOR = 0;
  223. self.time = 0;
  224. self.DPR = window.devicePixelRatio;
  225. self.GPUParticleSystem = particleSystem;
  226. var particlesPerArray = Math.floor(self.PARTICLE_COUNT / self.MAX_ATTRIBUTES);
  227. // extend Object3D
  228. THREE.Object3D.apply(this, arguments);
  229. // construct a couple small arrays used for packing variables into floats etc
  230. var UINT8_VIEW = new Uint8Array(4)
  231. var FLOAT_VIEW = new Float32Array(UINT8_VIEW.buffer)
  232. function decodeFloat(x, y, z, w) {
  233. UINT8_VIEW[0] = Math.floor(w)
  234. UINT8_VIEW[1] = Math.floor(z)
  235. UINT8_VIEW[2] = Math.floor(y)
  236. UINT8_VIEW[3] = Math.floor(x)
  237. return FLOAT_VIEW[0]
  238. }
  239. function componentToHex(c) {
  240. var hex = c.toString(16);
  241. return hex.length == 1 ? "0" + hex : hex;
  242. }
  243. function rgbToHex(r, g, b) {
  244. return "#" + componentToHex(r) + componentToHex(g) + componentToHex(b);
  245. }
  246. function hexToRgb(hex) {
  247. var r = hex >> 16;
  248. var g = (hex & 0x00FF00) >> 8;
  249. var b = hex & 0x0000FF;
  250. if (r > 0) r--;
  251. if (g > 0) g--;
  252. if (b > 0) b--;
  253. return [r, g, b];
  254. };
  255. self.particles = [];
  256. self.deadParticles = [];
  257. self.particlesAvailableSlot = [];
  258. // create a container for particles
  259. self.particleUpdate = false;
  260. // Shader Based Particle System
  261. self.particleShaderGeo = new THREE.BufferGeometry();
  262. // new hyper compressed attributes
  263. self.particleVertices = new Float32Array(self.PARTICLE_COUNT * 3); // position
  264. self.particlePositionsStartTime = new Float32Array(self.PARTICLE_COUNT * 4); // position
  265. self.particleVelColSizeLife = new Float32Array(self.PARTICLE_COUNT * 4);
  266. for (var i = 0; i < self.PARTICLE_COUNT; i++) {
  267. self.particlePositionsStartTime[i * 4 + 0] = 100; //x
  268. self.particlePositionsStartTime[i * 4 + 1] = 0; //y
  269. self.particlePositionsStartTime[i * 4 + 2] = 0.0; //z
  270. self.particlePositionsStartTime[i * 4 + 3] = 0.0; //startTime
  271. self.particleVertices[i * 3 + 0] = 0; //x
  272. self.particleVertices[i * 3 + 1] = 0; //y
  273. self.particleVertices[i * 3 + 2] = 0.0; //z
  274. self.particleVelColSizeLife[i * 4 + 0] = decodeFloat(128, 128, 0, 0); //vel
  275. self.particleVelColSizeLife[i * 4 + 1] = decodeFloat(0, 254, 0, 254); //color
  276. self.particleVelColSizeLife[i * 4 + 2] = 1.0; //size
  277. self.particleVelColSizeLife[i * 4 + 3] = 0.0; //lifespan
  278. }
  279. self.particleShaderGeo.addAttribute('position', new THREE.BufferAttribute(self.particleVertices, 3));
  280. self.particleShaderGeo.addAttribute('particlePositionsStartTime', new THREE.DynamicBufferAttribute(self.particlePositionsStartTime, 4));
  281. self.particleShaderGeo.addAttribute('particleVelColSizeLife', new THREE.DynamicBufferAttribute(self.particleVelColSizeLife, 4));
  282. self.posStart = self.particleShaderGeo.getAttribute('particlePositionsStartTime')
  283. self.velCol = self.particleShaderGeo.getAttribute('particleVelColSizeLife');
  284. self.particleShaderMat = self.GPUParticleSystem.particleShaderMat;
  285. this.init = function() {
  286. self.particleSystem = new THREE.PointCloud(self.particleShaderGeo, self.particleShaderMat);
  287. self.particleSystem.frustumCulled = false;
  288. this.add(self.particleSystem);
  289. };
  290. var options = {},
  291. position = new THREE.Vector3(),
  292. velocity = new THREE.Vector3(),
  293. positionRandomness = 0.,
  294. velocityRandomness = 0.,
  295. color = 0xffffff,
  296. colorRandomness = 0.,
  297. turbulence = 0.,
  298. lifetime = 0.,
  299. size = 0.,
  300. sizeRandomness = 0.,
  301. i;
  302. var maxVel = 2;
  303. var maxSource = 250;
  304. this.offset = 0;
  305. this.count = 0;
  306. this.spawnParticle = function(options) {
  307. options = options || {};
  308. // setup reasonable default values for all arguments
  309. position = options.position !== undefined ? position.copy(options.position) : position.set(0., 0., 0.);
  310. velocity = options.velocity !== undefined ? velocity.copy(options.velocity) : velocity.set(0., 0., 0.);
  311. positionRandomness = options.positionRandomness !== undefined ? options.positionRandomness : 0.0;
  312. velocityRandomness = options.velocityRandomness !== undefined ? options.velocityRandomness : 0.0;
  313. color = options.color !== undefined ? options.color : 0xffffff;
  314. colorRandomness = options.colorRandomness !== undefined ? options.colorRandomness : 1.0;
  315. turbulence = options.turbulence !== undefined ? options.turbulence : 1.0;
  316. lifetime = options.lifetime !== undefined ? options.lifetime : 5.0;
  317. size = options.size !== undefined ? options.size : 10;
  318. sizeRandomness = options.sizeRandomness !== undefined ? options.sizeRandomness : 0.0,
  319. smoothPosition = options.smoothPosition !== undefined ? options.smoothPosition : false;
  320. if (self.DPR !== undefined) size *= self.DPR;
  321. i = self.PARTICLE_CURSOR;
  322. self.posStart.array[i * 4 + 0] = position.x + ((particleSystem.random()) * positionRandomness); // - ( velocity.x * particleSystem.random() ); //x
  323. self.posStart.array[i * 4 + 1] = position.y + ((particleSystem.random()) * positionRandomness); // - ( velocity.y * particleSystem.random() ); //y
  324. self.posStart.array[i * 4 + 2] = position.z + ((particleSystem.random()) * positionRandomness); // - ( velocity.z * particleSystem.random() ); //z
  325. self.posStart.array[i * 4 + 3] = self.time + (particleSystem.random() * 2e-2); //startTime
  326. if (smoothPosition === true) {
  327. self.posStart.array[i * 4 + 0] += -(velocity.x * particleSystem.random()); //x
  328. self.posStart.array[i * 4 + 1] += -(velocity.y * particleSystem.random()); //y
  329. self.posStart.array[i * 4 + 2] += -(velocity.z * particleSystem.random()); //z
  330. }
  331. var velX = velocity.x + (particleSystem.random()) * velocityRandomness;
  332. var velY = velocity.y + (particleSystem.random()) * velocityRandomness;
  333. var velZ = velocity.z + (particleSystem.random()) * velocityRandomness;
  334. // convert turbulence rating to something we can pack into a vec4
  335. var turbulence = Math.floor(turbulence * 254);
  336. // clamp our value to between 0. and 1.
  337. velX = Math.floor(maxSource * ((velX - -maxVel) / (maxVel - -maxVel)));
  338. velY = Math.floor(maxSource * ((velY - -maxVel) / (maxVel - -maxVel)));
  339. velZ = Math.floor(maxSource * ((velZ - -maxVel) / (maxVel - -maxVel)));
  340. self.velCol.array[i * 4 + 0] = decodeFloat(velX, velY, velZ, turbulence); //vel
  341. var rgb = hexToRgb(color);
  342. for (var c = 0; c < rgb.length; c++) {
  343. rgb[c] = Math.floor(rgb[c] + ((particleSystem.random()) * colorRandomness) * 254);
  344. if (rgb[c] > 254) rgb[c] = 254;
  345. if (rgb[c] < 0) rgb[c] = 0;
  346. }
  347. self.velCol.array[i * 4 + 1] = decodeFloat(rgb[0], rgb[1], rgb[2], 254); //color
  348. self.velCol.array[i * 4 + 2] = size + (particleSystem.random()) * sizeRandomness; //size
  349. self.velCol.array[i * 4 + 3] = lifetime; //lifespan
  350. if (this.offset == 0) {
  351. this.offset = self.PARTICLE_CURSOR;
  352. }
  353. self.count++;
  354. self.PARTICLE_CURSOR++;
  355. if (self.PARTICLE_CURSOR >= self.PARTICLE_COUNT) {
  356. self.PARTICLE_CURSOR = 0;
  357. }
  358. self.particleUpdate = true;
  359. }
  360. this.update = function(time) {
  361. self.time = time;
  362. self.particleShaderMat.uniforms['uTime'].value = time;
  363. this.geometryUpdate();
  364. };
  365. this.geometryUpdate = function() {
  366. if (self.particleUpdate == true) {
  367. self.particleUpdate = false;
  368. // if we can get away with a partial buffer update, do so
  369. if (self.offset + self.count < self.PARTICLE_COUNT) {
  370. self.posStart.updateRange.offset = self.velCol.updateRange.offset = self.offset * 4;
  371. self.posStart.updateRange.count = self.velCol.updateRange.count = self.count * 4;
  372. } else {
  373. self.posStart.updateRange.offset = 0;
  374. self.posStart.updateRange.count = self.velCol.updateRange.count = (self.PARTICLE_COUNT * 4);
  375. }
  376. self.posStart.needsUpdate = true;
  377. self.velCol.needsUpdate = true;
  378. self.offset = 0;
  379. self.count = 0;
  380. }
  381. }
  382. this.init();
  383. }
  384. THREE.GPUParticleContainer.prototype = Object.create(THREE.Object3D.prototype);
  385. THREE.GPUParticleContainer.prototype.constructor = THREE.GPUParticleContainer;