SimplexNoise.js 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. // Ported from Stefan Gustavson's java implementation
  2. // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  3. // Read Stefan's excellent paper for details on how this code works.
  4. //
  5. // Sean McCullough [email protected]
  6. //
  7. // Added 4D noise
  8. // Joshua Koo [email protected]
  9. /**
  10. * You can pass in a random number generator object if you like.
  11. * It is assumed to have a random() method.
  12. */
  13. var SimplexNoise = function( r ) {
  14. if ( r == undefined ) r = Math;
  15. this.grad3 = [[ 1,1,0 ],[ - 1,1,0 ],[ 1,- 1,0 ],[ - 1,- 1,0 ],
  16. [ 1,0,1 ],[ - 1,0,1 ],[ 1,0,- 1 ],[ - 1,0,- 1 ],
  17. [ 0,1,1 ],[ 0,- 1,1 ],[ 0,1,- 1 ],[ 0,- 1,- 1 ]];
  18. this.grad4 = [[ 0,1,1,1 ], [ 0,1,1,- 1 ], [ 0,1,- 1,1 ], [ 0,1,- 1,- 1 ],
  19. [ 0,- 1,1,1 ], [ 0,- 1,1,- 1 ], [ 0,- 1,- 1,1 ], [ 0,- 1,- 1,- 1 ],
  20. [ 1,0,1,1 ], [ 1,0,1,- 1 ], [ 1,0,- 1,1 ], [ 1,0,- 1,- 1 ],
  21. [ - 1,0,1,1 ], [ - 1,0,1,- 1 ], [ - 1,0,- 1,1 ], [ - 1,0,- 1,- 1 ],
  22. [ 1,1,0,1 ], [ 1,1,0,- 1 ], [ 1,- 1,0,1 ], [ 1,- 1,0,- 1 ],
  23. [ - 1,1,0,1 ], [ - 1,1,0,- 1 ], [ - 1,- 1,0,1 ], [ - 1,- 1,0,- 1 ],
  24. [ 1,1,1,0 ], [ 1,1,- 1,0 ], [ 1,- 1,1,0 ], [ 1,- 1,- 1,0 ],
  25. [ - 1,1,1,0 ], [ - 1,1,- 1,0 ], [ - 1,- 1,1,0 ], [ - 1,- 1,- 1,0 ]];
  26. this.p = [];
  27. for ( var i = 0; i < 256; i ++ ) {
  28. this.p[ i ] = Math.floor( r.random() * 256 );
  29. }
  30. // To remove the need for index wrapping, double the permutation table length
  31. this.perm = [];
  32. for ( var i = 0; i < 512; i ++ ) {
  33. this.perm[ i ] = this.p[ i & 255 ];
  34. }
  35. // A lookup table to traverse the simplex around a given point in 4D.
  36. // Details can be found where this table is used, in the 4D noise method.
  37. this.simplex = [
  38. [ 0,1,2,3 ],[ 0,1,3,2 ],[ 0,0,0,0 ],[ 0,2,3,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,2,3,0 ],
  39. [ 0,2,1,3 ],[ 0,0,0,0 ],[ 0,3,1,2 ],[ 0,3,2,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,3,2,0 ],
  40. [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],
  41. [ 1,2,0,3 ],[ 0,0,0,0 ],[ 1,3,0,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,3,0,1 ],[ 2,3,1,0 ],
  42. [ 1,0,2,3 ],[ 1,0,3,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,0,3,1 ],[ 0,0,0,0 ],[ 2,1,3,0 ],
  43. [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],
  44. [ 2,0,1,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,0,1,2 ],[ 3,0,2,1 ],[ 0,0,0,0 ],[ 3,1,2,0 ],
  45. [ 2,1,0,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,1,0,2 ],[ 0,0,0,0 ],[ 3,2,0,1 ],[ 3,2,1,0 ]];
  46. };
  47. SimplexNoise.prototype.dot = function( g, x, y ) {
  48. return g[ 0 ] * x + g[ 1 ] * y;
  49. };
  50. SimplexNoise.prototype.dot3 = function( g, x, y, z ) {
  51. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z;
  52. };
  53. SimplexNoise.prototype.dot4 = function( g, x, y, z, w ) {
  54. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w;
  55. };
  56. SimplexNoise.prototype.noise = function( xin, yin ) {
  57. var n0, n1, n2; // Noise contributions from the three corners
  58. // Skew the input space to determine which simplex cell we're in
  59. var F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 );
  60. var s = ( xin + yin ) * F2; // Hairy factor for 2D
  61. var i = Math.floor( xin + s );
  62. var j = Math.floor( yin + s );
  63. var G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0;
  64. var t = ( i + j ) * G2;
  65. var X0 = i - t; // Unskew the cell origin back to (x,y) space
  66. var Y0 = j - t;
  67. var x0 = xin - X0; // The x,y distances from the cell origin
  68. var y0 = yin - Y0;
  69. // For the 2D case, the simplex shape is an equilateral triangle.
  70. // Determine which simplex we are in.
  71. var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
  72. if ( x0 > y0 ) {
  73. i1 = 1; j1 = 0;
  74. } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  75. else {
  76. i1 = 0; j1 = 1;
  77. } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  78. // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  79. // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  80. // c = (3-sqrt(3))/6
  81. var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  82. var y1 = y0 - j1 + G2;
  83. var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
  84. var y2 = y0 - 1.0 + 2.0 * G2;
  85. // Work out the hashed gradient indices of the three simplex corners
  86. var ii = i & 255;
  87. var jj = j & 255;
  88. var gi0 = this.perm[ ii + this.perm[ jj ]] % 12;
  89. var gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ]] % 12;
  90. var gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ]] % 12;
  91. // Calculate the contribution from the three corners
  92. var t0 = 0.5 - x0 * x0 - y0 * y0;
  93. if ( t0 < 0 ) n0 = 0.0;
  94. else {
  95. t0 *= t0;
  96. n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient
  97. }
  98. var t1 = 0.5 - x1 * x1 - y1 * y1;
  99. if ( t1 < 0 ) n1 = 0.0;
  100. else {
  101. t1 *= t1;
  102. n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 );
  103. }
  104. var t2 = 0.5 - x2 * x2 - y2 * y2;
  105. if ( t2 < 0 ) n2 = 0.0;
  106. else {
  107. t2 *= t2;
  108. n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 );
  109. }
  110. // Add contributions from each corner to get the final noise value.
  111. // The result is scaled to return values in the interval [-1,1].
  112. return 70.0 * ( n0 + n1 + n2 );
  113. };
  114. // 3D simplex noise
  115. SimplexNoise.prototype.noise3d = function( xin, yin, zin ) {
  116. var n0, n1, n2, n3; // Noise contributions from the four corners
  117. // Skew the input space to determine which simplex cell we're in
  118. var F3 = 1.0 / 3.0;
  119. var s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D
  120. var i = Math.floor( xin + s );
  121. var j = Math.floor( yin + s );
  122. var k = Math.floor( zin + s );
  123. var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
  124. var t = ( i + j + k ) * G3;
  125. var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
  126. var Y0 = j - t;
  127. var Z0 = k - t;
  128. var x0 = xin - X0; // The x,y,z distances from the cell origin
  129. var y0 = yin - Y0;
  130. var z0 = zin - Z0;
  131. // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  132. // Determine which simplex we are in.
  133. var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
  134. var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
  135. if ( x0 >= y0 ) {
  136. if ( y0 >= z0 ) {
  137. i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
  138. } // X Y Z order
  139. else if ( x0 >= z0 ) {
  140. i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;
  141. } // X Z Y order
  142. else {
  143. i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;
  144. } // Z X Y order
  145. }
  146. else {
  147. // x0<y0
  148. if ( y0 < z0 ) {
  149. i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;
  150. } // Z Y X order
  151. else if ( x0 < z0 ) {
  152. i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;
  153. } // Y Z X order
  154. else {
  155. i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
  156. } // Y X Z order
  157. }
  158. // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  159. // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  160. // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  161. // c = 1/6.
  162. var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  163. var y1 = y0 - j1 + G3;
  164. var z1 = z0 - k1 + G3;
  165. var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
  166. var y2 = y0 - j2 + 2.0 * G3;
  167. var z2 = z0 - k2 + 2.0 * G3;
  168. var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
  169. var y3 = y0 - 1.0 + 3.0 * G3;
  170. var z3 = z0 - 1.0 + 3.0 * G3;
  171. // Work out the hashed gradient indices of the four simplex corners
  172. var ii = i & 255;
  173. var jj = j & 255;
  174. var kk = k & 255;
  175. var gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ]]] % 12;
  176. var gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ]]] % 12;
  177. var gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ]]] % 12;
  178. var gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ]]] % 12;
  179. // Calculate the contribution from the four corners
  180. var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
  181. if ( t0 < 0 ) n0 = 0.0;
  182. else {
  183. t0 *= t0;
  184. n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 );
  185. }
  186. var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
  187. if ( t1 < 0 ) n1 = 0.0;
  188. else {
  189. t1 *= t1;
  190. n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 );
  191. }
  192. var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
  193. if ( t2 < 0 ) n2 = 0.0;
  194. else {
  195. t2 *= t2;
  196. n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 );
  197. }
  198. var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
  199. if ( t3 < 0 ) n3 = 0.0;
  200. else {
  201. t3 *= t3;
  202. n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 );
  203. }
  204. // Add contributions from each corner to get the final noise value.
  205. // The result is scaled to stay just inside [-1,1]
  206. return 32.0 * ( n0 + n1 + n2 + n3 );
  207. };
  208. // 4D simplex noise
  209. SimplexNoise.prototype.noise4d = function( x, y, z, w ) {
  210. // For faster and easier lookups
  211. var grad4 = this.grad4;
  212. var simplex = this.simplex;
  213. var perm = this.perm;
  214. // The skewing and unskewing factors are hairy again for the 4D case
  215. var F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0;
  216. var G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0;
  217. var n0, n1, n2, n3, n4; // Noise contributions from the five corners
  218. // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
  219. var s = ( x + y + z + w ) * F4; // Factor for 4D skewing
  220. var i = Math.floor( x + s );
  221. var j = Math.floor( y + s );
  222. var k = Math.floor( z + s );
  223. var l = Math.floor( w + s );
  224. var t = ( i + j + k + l ) * G4; // Factor for 4D unskewing
  225. var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
  226. var Y0 = j - t;
  227. var Z0 = k - t;
  228. var W0 = l - t;
  229. var x0 = x - X0; // The x,y,z,w distances from the cell origin
  230. var y0 = y - Y0;
  231. var z0 = z - Z0;
  232. var w0 = w - W0;
  233. // For the 4D case, the simplex is a 4D shape I won't even try to describe.
  234. // To find out which of the 24 possible simplices we're in, we need to
  235. // determine the magnitude ordering of x0, y0, z0 and w0.
  236. // The method below is a good way of finding the ordering of x,y,z,w and
  237. // then find the correct traversal order for the simplex we’re in.
  238. // First, six pair-wise comparisons are performed between each possible pair
  239. // of the four coordinates, and the results are used to add up binary bits
  240. // for an integer index.
  241. var c1 = ( x0 > y0 ) ? 32 : 0;
  242. var c2 = ( x0 > z0 ) ? 16 : 0;
  243. var c3 = ( y0 > z0 ) ? 8 : 0;
  244. var c4 = ( x0 > w0 ) ? 4 : 0;
  245. var c5 = ( y0 > w0 ) ? 2 : 0;
  246. var c6 = ( z0 > w0 ) ? 1 : 0;
  247. var c = c1 + c2 + c3 + c4 + c5 + c6;
  248. var i1, j1, k1, l1; // The integer offsets for the second simplex corner
  249. var i2, j2, k2, l2; // The integer offsets for the third simplex corner
  250. var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
  251. // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
  252. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
  253. // impossible. Only the 24 indices which have non-zero entries make any sense.
  254. // We use a thresholding to set the coordinates in turn from the largest magnitude.
  255. // The number 3 in the "simplex" array is at the position of the largest coordinate.
  256. i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0;
  257. j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0;
  258. k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0;
  259. l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0;
  260. // The number 2 in the "simplex" array is at the second largest coordinate.
  261. i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0;
  262. j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0; k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0;
  263. l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0;
  264. // The number 1 in the "simplex" array is at the second smallest coordinate.
  265. i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0;
  266. j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0;
  267. k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0;
  268. l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0;
  269. // The fifth corner has all coordinate offsets = 1, so no need to look that up.
  270. var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
  271. var y1 = y0 - j1 + G4;
  272. var z1 = z0 - k1 + G4;
  273. var w1 = w0 - l1 + G4;
  274. var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
  275. var y2 = y0 - j2 + 2.0 * G4;
  276. var z2 = z0 - k2 + 2.0 * G4;
  277. var w2 = w0 - l2 + 2.0 * G4;
  278. var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
  279. var y3 = y0 - j3 + 3.0 * G4;
  280. var z3 = z0 - k3 + 3.0 * G4;
  281. var w3 = w0 - l3 + 3.0 * G4;
  282. var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
  283. var y4 = y0 - 1.0 + 4.0 * G4;
  284. var z4 = z0 - 1.0 + 4.0 * G4;
  285. var w4 = w0 - 1.0 + 4.0 * G4;
  286. // Work out the hashed gradient indices of the five simplex corners
  287. var ii = i & 255;
  288. var jj = j & 255;
  289. var kk = k & 255;
  290. var ll = l & 255;
  291. var gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ]]]] % 32;
  292. var gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ]]]] % 32;
  293. var gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ]]]] % 32;
  294. var gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ]]]] % 32;
  295. var gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ]]]] % 32;
  296. // Calculate the contribution from the five corners
  297. var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
  298. if ( t0 < 0 ) n0 = 0.0;
  299. else {
  300. t0 *= t0;
  301. n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 );
  302. }
  303. var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
  304. if ( t1 < 0 ) n1 = 0.0;
  305. else {
  306. t1 *= t1;
  307. n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 );
  308. }
  309. var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
  310. if ( t2 < 0 ) n2 = 0.0;
  311. else {
  312. t2 *= t2;
  313. n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 );
  314. } var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
  315. if ( t3 < 0 ) n3 = 0.0;
  316. else {
  317. t3 *= t3;
  318. n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 );
  319. }
  320. var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
  321. if ( t4 < 0 ) n4 = 0.0;
  322. else {
  323. t4 *= t4;
  324. n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 );
  325. }
  326. // Sum up and scale the result to cover the range [-1,1]
  327. return 27.0 * ( n0 + n1 + n2 + n3 + n4 );
  328. };