EXRLoader.js 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445
  1. console.warn( "THREE.EXRLoader: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation." );
  2. /**
  3. * OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
  4. * Supports reading as UnsignedByte, HalfFloat and Float type data texture.
  5. *
  6. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  7. * implementation, so I have preserved their copyright notices.
  8. */
  9. // /*
  10. // Copyright (c) 2014 - 2017, Syoyo Fujita
  11. // All rights reserved.
  12. // Redistribution and use in source and binary forms, with or without
  13. // modification, are permitted provided that the following conditions are met:
  14. // * Redistributions of source code must retain the above copyright
  15. // notice, this list of conditions and the following disclaimer.
  16. // * Redistributions in binary form must reproduce the above copyright
  17. // notice, this list of conditions and the following disclaimer in the
  18. // documentation and/or other materials provided with the distribution.
  19. // * Neither the name of the Syoyo Fujita nor the
  20. // names of its contributors may be used to endorse or promote products
  21. // derived from this software without specific prior written permission.
  22. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  23. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  24. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  25. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  26. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  27. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  28. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  29. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  30. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  31. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  32. // */
  33. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  34. // ///////////////////////////////////////////////////////////////////////////
  35. // //
  36. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  37. // // Digital Ltd. LLC
  38. // //
  39. // // All rights reserved.
  40. // //
  41. // // Redistribution and use in source and binary forms, with or without
  42. // // modification, are permitted provided that the following conditions are
  43. // // met:
  44. // // * Redistributions of source code must retain the above copyright
  45. // // notice, this list of conditions and the following disclaimer.
  46. // // * Redistributions in binary form must reproduce the above
  47. // // copyright notice, this list of conditions and the following disclaimer
  48. // // in the documentation and/or other materials provided with the
  49. // // distribution.
  50. // // * Neither the name of Industrial Light & Magic nor the names of
  51. // // its contributors may be used to endorse or promote products derived
  52. // // from this software without specific prior written permission.
  53. // //
  54. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  55. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  56. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  57. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  58. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  59. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  60. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  61. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  62. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  63. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  64. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  65. // //
  66. // ///////////////////////////////////////////////////////////////////////////
  67. // // End of OpenEXR license -------------------------------------------------
  68. THREE.EXRLoader = function ( manager ) {
  69. THREE.DataTextureLoader.call( this, manager );
  70. this.type = THREE.FloatType;
  71. };
  72. THREE.EXRLoader.prototype = Object.assign( Object.create( THREE.DataTextureLoader.prototype ), {
  73. constructor: THREE.EXRLoader,
  74. parse: function ( buffer ) {
  75. const USHORT_RANGE = ( 1 << 16 );
  76. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  77. const HUF_ENCBITS = 16; // literal (value) bit length
  78. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  79. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  80. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  81. const HUF_DECMASK = HUF_DECSIZE - 1;
  82. const NBITS = 16;
  83. const A_OFFSET = 1 << ( NBITS - 1 );
  84. const MOD_MASK = ( 1 << NBITS ) - 1;
  85. const SHORT_ZEROCODE_RUN = 59;
  86. const LONG_ZEROCODE_RUN = 63;
  87. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  88. const ULONG_SIZE = 8;
  89. const FLOAT32_SIZE = 4;
  90. const INT32_SIZE = 4;
  91. const INT16_SIZE = 2;
  92. const INT8_SIZE = 1;
  93. const STATIC_HUFFMAN = 0;
  94. const DEFLATE = 1;
  95. const UNKNOWN = 0;
  96. const LOSSY_DCT = 1;
  97. const RLE = 2;
  98. const logBase = Math.pow( 2.7182818, 2.2 );
  99. var tmpDataView = new DataView( new ArrayBuffer( 8 ) );
  100. function frexp( value ) {
  101. if ( value === 0 ) return [ value, 0 ];
  102. tmpDataView.setFloat64( 0, value );
  103. var bits = ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF;
  104. if ( bits === 0 ) { // denormal
  105. tmpDataView.setFloat64( 0, value * Math.pow( 2, 64 ) ); // exp + 64
  106. bits = ( ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF ) - 64;
  107. }
  108. var exponent = bits - 1022;
  109. var mantissa = ldexp( value, - exponent );
  110. return [ mantissa, exponent ];
  111. }
  112. function ldexp( mantissa, exponent ) {
  113. var steps = Math.min( 3, Math.ceil( Math.abs( exponent ) / 1023 ) );
  114. var result = mantissa;
  115. for ( var i = 0; i < steps; i ++ )
  116. result *= Math.pow( 2, Math.floor( ( exponent + i ) / steps ) );
  117. return result;
  118. }
  119. function reverseLutFromBitmap( bitmap, lut ) {
  120. var k = 0;
  121. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  122. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  123. lut[ k ++ ] = i;
  124. }
  125. }
  126. var n = k - 1;
  127. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  128. return n;
  129. }
  130. function hufClearDecTable( hdec ) {
  131. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  132. hdec[ i ] = {};
  133. hdec[ i ].len = 0;
  134. hdec[ i ].lit = 0;
  135. hdec[ i ].p = null;
  136. }
  137. }
  138. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  139. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  140. while ( lc < nBits ) {
  141. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  142. lc += 8;
  143. }
  144. lc -= nBits;
  145. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  146. getBitsReturn.c = c;
  147. getBitsReturn.lc = lc;
  148. }
  149. const hufTableBuffer = new Array( 59 );
  150. function hufCanonicalCodeTable( hcode ) {
  151. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  152. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  153. var c = 0;
  154. for ( var i = 58; i > 0; -- i ) {
  155. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  156. hufTableBuffer[ i ] = c;
  157. c = nc;
  158. }
  159. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  160. var l = hcode[ i ];
  161. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  162. }
  163. }
  164. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  165. var p = inOffset;
  166. var c = 0;
  167. var lc = 0;
  168. for ( ; im <= iM; im ++ ) {
  169. if ( p.value - inOffset.value > ni ) return false;
  170. getBits( 6, c, lc, uInt8Array, p );
  171. var l = getBitsReturn.l;
  172. c = getBitsReturn.c;
  173. lc = getBitsReturn.lc;
  174. hcode[ im ] = l;
  175. if ( l == LONG_ZEROCODE_RUN ) {
  176. if ( p.value - inOffset.value > ni ) {
  177. throw 'Something wrong with hufUnpackEncTable';
  178. }
  179. getBits( 8, c, lc, uInt8Array, p );
  180. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  181. c = getBitsReturn.c;
  182. lc = getBitsReturn.lc;
  183. if ( im + zerun > iM + 1 ) {
  184. throw 'Something wrong with hufUnpackEncTable';
  185. }
  186. while ( zerun -- ) hcode[ im ++ ] = 0;
  187. im --;
  188. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  189. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  190. if ( im + zerun > iM + 1 ) {
  191. throw 'Something wrong with hufUnpackEncTable';
  192. }
  193. while ( zerun -- ) hcode[ im ++ ] = 0;
  194. im --;
  195. }
  196. }
  197. hufCanonicalCodeTable( hcode );
  198. }
  199. function hufLength( code ) {
  200. return code & 63;
  201. }
  202. function hufCode( code ) {
  203. return code >> 6;
  204. }
  205. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  206. for ( ; im <= iM; im ++ ) {
  207. var c = hufCode( hcode[ im ] );
  208. var l = hufLength( hcode[ im ] );
  209. if ( c >> l ) {
  210. throw 'Invalid table entry';
  211. }
  212. if ( l > HUF_DECBITS ) {
  213. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  214. if ( pl.len ) {
  215. throw 'Invalid table entry';
  216. }
  217. pl.lit ++;
  218. if ( pl.p ) {
  219. var p = pl.p;
  220. pl.p = new Array( pl.lit );
  221. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  222. pl.p[ i ] = p[ i ];
  223. }
  224. } else {
  225. pl.p = new Array( 1 );
  226. }
  227. pl.p[ pl.lit - 1 ] = im;
  228. } else if ( l ) {
  229. var plOffset = 0;
  230. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  231. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  232. if ( pl.len || pl.p ) {
  233. throw 'Invalid table entry';
  234. }
  235. pl.len = l;
  236. pl.lit = im;
  237. plOffset ++;
  238. }
  239. }
  240. }
  241. return true;
  242. }
  243. const getCharReturn = { c: 0, lc: 0 };
  244. function getChar( c, lc, uInt8Array, inOffset ) {
  245. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  246. lc += 8;
  247. getCharReturn.c = c;
  248. getCharReturn.lc = lc;
  249. }
  250. const getCodeReturn = { c: 0, lc: 0 };
  251. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  252. if ( po == rlc ) {
  253. if ( lc < 8 ) {
  254. getChar( c, lc, uInt8Array, inOffset );
  255. c = getCharReturn.c;
  256. lc = getCharReturn.lc;
  257. }
  258. lc -= 8;
  259. var cs = ( c >> lc );
  260. var cs = new Uint8Array( [ cs ] )[ 0 ];
  261. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  262. return false;
  263. }
  264. var s = outBuffer[ outBufferOffset.value - 1 ];
  265. while ( cs -- > 0 ) {
  266. outBuffer[ outBufferOffset.value ++ ] = s;
  267. }
  268. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  269. outBuffer[ outBufferOffset.value ++ ] = po;
  270. } else {
  271. return false;
  272. }
  273. getCodeReturn.c = c;
  274. getCodeReturn.lc = lc;
  275. }
  276. function UInt16( value ) {
  277. return ( value & 0xFFFF );
  278. }
  279. function Int16( value ) {
  280. var ref = UInt16( value );
  281. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  282. }
  283. const wdec14Return = { a: 0, b: 0 };
  284. function wdec14( l, h ) {
  285. var ls = Int16( l );
  286. var hs = Int16( h );
  287. var hi = hs;
  288. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  289. var as = ai;
  290. var bs = ai - hi;
  291. wdec14Return.a = as;
  292. wdec14Return.b = bs;
  293. }
  294. function wdec16( l, h ) {
  295. var m = UInt16( l );
  296. var d = UInt16( h );
  297. var bb = ( m - ( d >> 1 ) ) & MOD_MASK;
  298. var aa = ( d + bb - A_OFFSET ) & MOD_MASK;
  299. wdec14Return.a = aa;
  300. wdec14Return.b = bb;
  301. }
  302. function wav2Decode( buffer, j, nx, ox, ny, oy, mx ) {
  303. var w14 = mx < ( 1 << 14 );
  304. var n = ( nx > ny ) ? ny : nx;
  305. var p = 1;
  306. var p2;
  307. while ( p <= n ) p <<= 1;
  308. p >>= 1;
  309. p2 = p;
  310. p >>= 1;
  311. while ( p >= 1 ) {
  312. var py = 0;
  313. var ey = py + oy * ( ny - p2 );
  314. var oy1 = oy * p;
  315. var oy2 = oy * p2;
  316. var ox1 = ox * p;
  317. var ox2 = ox * p2;
  318. var i00, i01, i10, i11;
  319. for ( ; py <= ey; py += oy2 ) {
  320. var px = py;
  321. var ex = py + ox * ( nx - p2 );
  322. for ( ; px <= ex; px += ox2 ) {
  323. var p01 = px + ox1;
  324. var p10 = px + oy1;
  325. var p11 = p10 + ox1;
  326. if ( w14 ) {
  327. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  328. i00 = wdec14Return.a;
  329. i10 = wdec14Return.b;
  330. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  331. i01 = wdec14Return.a;
  332. i11 = wdec14Return.b;
  333. wdec14( i00, i01 );
  334. buffer[ px + j ] = wdec14Return.a;
  335. buffer[ p01 + j ] = wdec14Return.b;
  336. wdec14( i10, i11 );
  337. buffer[ p10 + j ] = wdec14Return.a;
  338. buffer[ p11 + j ] = wdec14Return.b;
  339. } else {
  340. wdec16( buffer[ px + j ], buffer[ p10 + j ] );
  341. i00 = wdec14Return.a;
  342. i10 = wdec14Return.b;
  343. wdec16( buffer[ p01 + j ], buffer[ p11 + j ] );
  344. i01 = wdec14Return.a;
  345. i11 = wdec14Return.b;
  346. wdec16( i00, i01 );
  347. buffer[ px + j ] = wdec14Return.a;
  348. buffer[ p01 + j ] = wdec14Return.b;
  349. wdec16( i10, i11 );
  350. buffer[ p10 + j ] = wdec14Return.a;
  351. buffer[ p11 + j ] = wdec14Return.b;
  352. }
  353. }
  354. if ( nx & p ) {
  355. var p10 = px + oy1;
  356. if ( w14 )
  357. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  358. else
  359. wdec16( buffer[ px + j ], buffer[ p10 + j ] );
  360. i00 = wdec14Return.a;
  361. buffer[ p10 + j ] = wdec14Return.b;
  362. buffer[ px + j ] = i00;
  363. }
  364. }
  365. if ( ny & p ) {
  366. var px = py;
  367. var ex = py + ox * ( nx - p2 );
  368. for ( ; px <= ex; px += ox2 ) {
  369. var p01 = px + ox1;
  370. if ( w14 )
  371. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  372. else
  373. wdec16( buffer[ px + j ], buffer[ p01 + j ] );
  374. i00 = wdec14Return.a;
  375. buffer[ p01 + j ] = wdec14Return.b;
  376. buffer[ px + j ] = i00;
  377. }
  378. }
  379. p2 = p;
  380. p >>= 1;
  381. }
  382. return py;
  383. }
  384. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  385. var c = 0;
  386. var lc = 0;
  387. var outBufferEndOffset = no;
  388. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  389. while ( inOffset.value < inOffsetEnd ) {
  390. getChar( c, lc, uInt8Array, inOffset );
  391. c = getCharReturn.c;
  392. lc = getCharReturn.lc;
  393. while ( lc >= HUF_DECBITS ) {
  394. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  395. var pl = decodingTable[ index ];
  396. if ( pl.len ) {
  397. lc -= pl.len;
  398. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  399. c = getCodeReturn.c;
  400. lc = getCodeReturn.lc;
  401. } else {
  402. if ( ! pl.p ) {
  403. throw 'hufDecode issues';
  404. }
  405. var j;
  406. for ( j = 0; j < pl.lit; j ++ ) {
  407. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  408. while ( lc < l && inOffset.value < inOffsetEnd ) {
  409. getChar( c, lc, uInt8Array, inOffset );
  410. c = getCharReturn.c;
  411. lc = getCharReturn.lc;
  412. }
  413. if ( lc >= l ) {
  414. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  415. lc -= l;
  416. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  417. c = getCodeReturn.c;
  418. lc = getCodeReturn.lc;
  419. break;
  420. }
  421. }
  422. }
  423. if ( j == pl.lit ) {
  424. throw 'hufDecode issues';
  425. }
  426. }
  427. }
  428. }
  429. var i = ( 8 - ni ) & 7;
  430. c >>= i;
  431. lc -= i;
  432. while ( lc > 0 ) {
  433. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  434. if ( pl.len ) {
  435. lc -= pl.len;
  436. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  437. c = getCodeReturn.c;
  438. lc = getCodeReturn.lc;
  439. } else {
  440. throw 'hufDecode issues';
  441. }
  442. }
  443. return true;
  444. }
  445. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  446. var outOffset = { value: 0 };
  447. var initialInOffset = inOffset.value;
  448. var im = parseUint32( inDataView, inOffset );
  449. var iM = parseUint32( inDataView, inOffset );
  450. inOffset.value += 4;
  451. var nBits = parseUint32( inDataView, inOffset );
  452. inOffset.value += 4;
  453. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  454. throw 'Something wrong with HUF_ENCSIZE';
  455. }
  456. var freq = new Array( HUF_ENCSIZE );
  457. var hdec = new Array( HUF_DECSIZE );
  458. hufClearDecTable( hdec );
  459. var ni = nCompressed - ( inOffset.value - initialInOffset );
  460. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  461. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  462. throw 'Something wrong with hufUncompress';
  463. }
  464. hufBuildDecTable( freq, im, iM, hdec );
  465. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  466. }
  467. function applyLut( lut, data, nData ) {
  468. for ( var i = 0; i < nData; ++ i ) {
  469. data[ i ] = lut[ data[ i ] ];
  470. }
  471. }
  472. function predictor( source ) {
  473. for ( var t = 1; t < source.length; t ++ ) {
  474. var d = source[ t - 1 ] + source[ t ] - 128;
  475. source[ t ] = d;
  476. }
  477. }
  478. function interleaveScalar( source, out ) {
  479. var t1 = 0;
  480. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  481. var s = 0;
  482. var stop = source.length - 1;
  483. while ( true ) {
  484. if ( s > stop ) break;
  485. out[ s ++ ] = source[ t1 ++ ];
  486. if ( s > stop ) break;
  487. out[ s ++ ] = source[ t2 ++ ];
  488. }
  489. }
  490. function decodeRunLength( source ) {
  491. var size = source.byteLength;
  492. var out = new Array();
  493. var p = 0;
  494. var reader = new DataView( source );
  495. while ( size > 0 ) {
  496. var l = reader.getInt8( p ++ );
  497. if ( l < 0 ) {
  498. var count = - l;
  499. size -= count + 1;
  500. for ( var i = 0; i < count; i ++ ) {
  501. out.push( reader.getUint8( p ++ ) );
  502. }
  503. } else {
  504. var count = l;
  505. size -= 2;
  506. var value = reader.getUint8( p ++ );
  507. for ( var i = 0; i < count + 1; i ++ ) {
  508. out.push( value );
  509. }
  510. }
  511. }
  512. return out;
  513. }
  514. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  515. var dataView = new DataView( outBuffer.buffer );
  516. var width = channelData[ cscSet.idx[ 0 ] ].width;
  517. var height = channelData[ cscSet.idx[ 0 ] ].height;
  518. var numComp = 3;
  519. var numFullBlocksX = Math.floor( width / 8.0 );
  520. var numBlocksX = Math.ceil( width / 8.0 );
  521. var numBlocksY = Math.ceil( height / 8.0 );
  522. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  523. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  524. var currAcComp = { value: 0 };
  525. var currDcComp = new Array( numComp );
  526. var dctData = new Array( numComp );
  527. var halfZigBlock = new Array( numComp );
  528. var rowBlock = new Array( numComp );
  529. var rowOffsets = new Array( numComp );
  530. for ( let comp = 0; comp < numComp; ++ comp ) {
  531. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  532. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  533. dctData[ comp ] = new Float32Array( 64 );
  534. halfZigBlock[ comp ] = new Uint16Array( 64 );
  535. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  536. }
  537. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  538. var maxY = 8;
  539. if ( blocky == numBlocksY - 1 )
  540. maxY = leftoverY;
  541. var maxX = 8;
  542. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  543. if ( blockx == numBlocksX - 1 )
  544. maxX = leftoverX;
  545. for ( let comp = 0; comp < numComp; ++ comp ) {
  546. halfZigBlock[ comp ].fill( 0 );
  547. // set block DC component
  548. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
  549. // set block AC components
  550. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  551. // UnZigZag block to float
  552. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  553. // decode float dct
  554. dctInverse( dctData[ comp ] );
  555. }
  556. if ( numComp == 3 ) {
  557. csc709Inverse( dctData );
  558. }
  559. for ( let comp = 0; comp < numComp; ++ comp ) {
  560. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  561. }
  562. } // blockx
  563. let offset = 0;
  564. for ( let comp = 0; comp < numComp; ++ comp ) {
  565. let type = channelData[ cscSet.idx[ comp ] ].type;
  566. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  567. offset = rowOffsets[ comp ][ y ];
  568. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  569. let src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  570. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  571. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  572. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  573. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  574. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  575. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  576. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  577. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  578. offset += 8 * INT16_SIZE * type;
  579. }
  580. }
  581. // handle partial X blocks
  582. if ( numFullBlocksX != numBlocksX ) {
  583. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  584. let offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  585. let src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  586. for ( let x = 0; x < maxX; ++ x ) {
  587. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  588. }
  589. }
  590. }
  591. } // comp
  592. } // blocky
  593. var halfRow = new Uint16Array( width );
  594. var dataView = new DataView( outBuffer.buffer );
  595. // convert channels back to float, if needed
  596. for ( var comp = 0; comp < numComp; ++ comp ) {
  597. channelData[ cscSet.idx[ comp ] ].decoded = true;
  598. var type = channelData[ cscSet.idx[ comp ] ].type;
  599. if ( channelData[ comp ].type != 2 ) continue;
  600. for ( var y = 0; y < height; ++ y ) {
  601. let offset = rowOffsets[ comp ][ y ];
  602. for ( var x = 0; x < width; ++ x ) {
  603. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  604. }
  605. for ( var x = 0; x < width; ++ x ) {
  606. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  607. }
  608. }
  609. }
  610. }
  611. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  612. var acValue;
  613. var dctComp = 1;
  614. while ( dctComp < 64 ) {
  615. acValue = acBuffer[ currAcComp.value ];
  616. if ( acValue == 0xff00 ) {
  617. dctComp = 64;
  618. } else if ( acValue >> 8 == 0xff ) {
  619. dctComp += acValue & 0xff;
  620. } else {
  621. halfZigBlock[ dctComp ] = acValue;
  622. dctComp ++;
  623. }
  624. currAcComp.value ++;
  625. }
  626. }
  627. function unZigZag( src, dst ) {
  628. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  629. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  630. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  631. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  632. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  633. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  634. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  635. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  636. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  637. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  638. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  639. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  640. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  641. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  642. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  643. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  644. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  645. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  646. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  647. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  648. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  649. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  650. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  651. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  652. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  653. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  654. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  655. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  656. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  657. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  658. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  659. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  660. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  661. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  662. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  663. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  664. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  665. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  666. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  667. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  668. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  669. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  670. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  671. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  672. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  673. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  674. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  675. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  676. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  677. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  678. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  679. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  680. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  681. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  682. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  683. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  684. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  685. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  686. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  687. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  688. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  689. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  690. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  691. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  692. }
  693. function dctInverse( data ) {
  694. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  695. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  696. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  697. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  698. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  699. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  700. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  701. var alpha = new Array( 4 );
  702. var beta = new Array( 4 );
  703. var theta = new Array( 4 );
  704. var gamma = new Array( 4 );
  705. for ( var row = 0; row < 8; ++ row ) {
  706. var rowPtr = row * 8;
  707. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  708. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  709. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  710. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  711. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  712. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  713. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  714. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  715. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  716. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  717. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  718. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  719. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  720. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  721. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  722. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  723. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  724. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  725. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  726. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  727. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  728. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  729. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  730. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  731. }
  732. for ( var column = 0; column < 8; ++ column ) {
  733. alpha[ 0 ] = c * data[ 16 + column ];
  734. alpha[ 1 ] = f * data[ 16 + column ];
  735. alpha[ 2 ] = c * data[ 48 + column ];
  736. alpha[ 3 ] = f * data[ 48 + column ];
  737. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  738. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  739. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  740. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  741. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  742. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  743. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  744. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  745. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  746. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  747. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  748. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  749. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  750. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  751. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  752. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  753. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  754. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  755. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  756. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  757. }
  758. }
  759. function csc709Inverse( data ) {
  760. for ( var i = 0; i < 64; ++ i ) {
  761. var y = data[ 0 ][ i ];
  762. var cb = data[ 1 ][ i ];
  763. var cr = data[ 2 ][ i ];
  764. data[ 0 ][ i ] = y + 1.5747 * cr;
  765. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  766. data[ 2 ][ i ] = y + 1.8556 * cb;
  767. }
  768. }
  769. function convertToHalf( src, dst, idx ) {
  770. for ( var i = 0; i < 64; ++ i ) {
  771. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  772. }
  773. }
  774. function toLinear( float ) {
  775. if ( float <= 1 ) {
  776. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  777. } else {
  778. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  779. }
  780. }
  781. function uncompressRAW( info ) {
  782. return new DataView( info.array.buffer, info.offset.value, info.size );
  783. }
  784. function uncompressRLE( info ) {
  785. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  786. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  787. var tmpBuffer = new Uint8Array( rawBuffer.length );
  788. predictor( rawBuffer ); // revert predictor
  789. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  790. return new DataView( tmpBuffer.buffer );
  791. }
  792. function uncompressZIP( info ) {
  793. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  794. if ( typeof Inflate === 'undefined' ) {
  795. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  796. }
  797. var inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  798. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  799. var tmpBuffer = new Uint8Array( rawBuffer.length );
  800. predictor( rawBuffer ); // revert predictor
  801. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  802. return new DataView( tmpBuffer.buffer );
  803. }
  804. function uncompressPIZ( info ) {
  805. var inDataView = info.viewer;
  806. var inOffset = { value: info.offset.value };
  807. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  808. var outBuffer = new Uint16Array( tmpBufSize );
  809. var bitmap = new Uint8Array( BITMAP_SIZE );
  810. // Setup channel info
  811. var outBufferEnd = 0;
  812. var pizChannelData = new Array( info.channels );
  813. for ( var i = 0; i < info.channels; i ++ ) {
  814. pizChannelData[ i ] = {};
  815. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  816. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  817. pizChannelData[ i ][ 'nx' ] = info.width;
  818. pizChannelData[ i ][ 'ny' ] = info.lines;
  819. pizChannelData[ i ][ 'size' ] = info.type;
  820. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  821. }
  822. // Read range compression data
  823. var minNonZero = parseUint16( inDataView, inOffset );
  824. var maxNonZero = parseUint16( inDataView, inOffset );
  825. if ( maxNonZero >= BITMAP_SIZE ) {
  826. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  827. }
  828. if ( minNonZero <= maxNonZero ) {
  829. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  830. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  831. }
  832. }
  833. // Reverse LUT
  834. var lut = new Uint16Array( USHORT_RANGE );
  835. var maxValue = reverseLutFromBitmap( bitmap, lut );
  836. var length = parseUint32( inDataView, inOffset );
  837. // Huffman decoding
  838. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  839. // Wavelet decoding
  840. for ( var i = 0; i < info.channels; ++ i ) {
  841. var cd = pizChannelData[ i ];
  842. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  843. wav2Decode(
  844. outBuffer,
  845. cd.start + j,
  846. cd.nx,
  847. cd.size,
  848. cd.ny,
  849. cd.nx * cd.size,
  850. maxValue
  851. );
  852. }
  853. }
  854. // Expand the pixel data to their original range
  855. applyLut( lut, outBuffer, outBufferEnd );
  856. // Rearrange the pixel data into the format expected by the caller.
  857. var tmpOffset = 0;
  858. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  859. for ( var y = 0; y < info.lines; y ++ ) {
  860. for ( var c = 0; c < info.channels; c ++ ) {
  861. var cd = pizChannelData[ c ];
  862. var n = cd.nx * cd.size;
  863. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  864. tmpBuffer.set( cp, tmpOffset );
  865. tmpOffset += n * INT16_SIZE;
  866. cd.end += n;
  867. }
  868. }
  869. return new DataView( tmpBuffer.buffer );
  870. }
  871. function uncompressPXR( info ) {
  872. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  873. if ( typeof Inflate === 'undefined' ) {
  874. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  875. }
  876. const inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  877. const rawBuffer = new Uint8Array( inflate.decompress().buffer );
  878. const sz = info.lines * info.channels * info.width;
  879. const tmpBuffer = ( info.type == 1 ) ? new Uint16Array( sz ) : new Uint32Array( sz );
  880. let tmpBufferEnd = 0;
  881. let writePtr = 0;
  882. let ptr = new Array(4);
  883. for ( let y = 0; y < info.lines; y++ ) {
  884. for ( let c = 0; c < info.channels; c++ ) {
  885. let pixel = 0;
  886. switch ( info.type ) {
  887. case 1:
  888. ptr[0] = tmpBufferEnd;
  889. ptr[1] = ptr[0] + info.width;
  890. tmpBufferEnd = ptr[1] + info.width;
  891. for ( let j = 0; j < info.width; ++j ) {
  892. const diff = ( rawBuffer[ ptr[0]++ ] << 8 ) | rawBuffer[ ptr[1]++ ];
  893. pixel += diff;
  894. tmpBuffer[ writePtr ] = pixel;
  895. writePtr ++;
  896. }
  897. break;
  898. case 2:
  899. ptr[0] = tmpBufferEnd;
  900. ptr[1] = ptr[0] + info.width;
  901. ptr[2] = ptr[1] + info.width;
  902. tmpBufferEnd = ptr[2] + info.width;
  903. for ( let j = 0; j < info.width; ++j ) {
  904. const diff = ( rawBuffer[ ptr[0]++ ] << 24 ) | ( rawBuffer[ ptr[1]++ ] << 16 ) | ( rawBuffer[ ptr[2]++ ] << 8 );
  905. pixel += diff;
  906. tmpBuffer[ writePtr ] = pixel;
  907. writePtr ++;
  908. }
  909. break;
  910. }
  911. }
  912. }
  913. return new DataView( tmpBuffer.buffer );
  914. }
  915. function uncompressDWA( info ) {
  916. var inDataView = info.viewer;
  917. var inOffset = { value: info.offset.value };
  918. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  919. // Read compression header information
  920. var dwaHeader = {
  921. version: parseInt64( inDataView, inOffset ),
  922. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  923. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  924. acCompressedSize: parseInt64( inDataView, inOffset ),
  925. dcCompressedSize: parseInt64( inDataView, inOffset ),
  926. rleCompressedSize: parseInt64( inDataView, inOffset ),
  927. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  928. rleRawSize: parseInt64( inDataView, inOffset ),
  929. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  930. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  931. acCompression: parseInt64( inDataView, inOffset )
  932. };
  933. if ( dwaHeader.version < 2 )
  934. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  935. // Read channel ruleset information
  936. var channelRules = new Array();
  937. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  938. while ( ruleSize > 0 ) {
  939. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  940. var value = parseUint8( inDataView, inOffset );
  941. var compression = ( value >> 2 ) & 3;
  942. var csc = ( value >> 4 ) - 1;
  943. var index = new Int8Array( [ csc ] )[ 0 ];
  944. var type = parseUint8( inDataView, inOffset );
  945. channelRules.push( {
  946. name: name,
  947. index: index,
  948. type: type,
  949. compression: compression,
  950. } );
  951. ruleSize -= name.length + 3;
  952. }
  953. // Classify channels
  954. var channels = EXRHeader.channels;
  955. var channelData = new Array( info.channels );
  956. for ( var i = 0; i < info.channels; ++ i ) {
  957. var cd = channelData[ i ] = {};
  958. var channel = channels[ i ];
  959. cd.name = channel.name;
  960. cd.compression = UNKNOWN;
  961. cd.decoded = false;
  962. cd.type = channel.pixelType;
  963. cd.pLinear = channel.pLinear;
  964. cd.width = info.width;
  965. cd.height = info.lines;
  966. }
  967. var cscSet = {
  968. idx: new Array( 3 )
  969. };
  970. for ( var offset = 0; offset < info.channels; ++ offset ) {
  971. var cd = channelData[ offset ];
  972. for ( var i = 0; i < channelRules.length; ++ i ) {
  973. var rule = channelRules[ i ];
  974. if ( cd.name == rule.name ) {
  975. cd.compression = rule.compression;
  976. if ( rule.index >= 0 ) {
  977. cscSet.idx[ rule.index ] = offset;
  978. }
  979. cd.offset = offset;
  980. }
  981. }
  982. }
  983. // Read DCT - AC component data
  984. if ( dwaHeader.acCompressedSize > 0 ) {
  985. switch ( dwaHeader.acCompression ) {
  986. case STATIC_HUFFMAN:
  987. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  988. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  989. break;
  990. case DEFLATE:
  991. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  992. var inflate = new Inflate( compressed, { resize: true, verify: true } );
  993. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  994. inOffset.value += dwaHeader.totalAcUncompressedCount;
  995. break;
  996. }
  997. }
  998. // Read DCT - DC component data
  999. if ( dwaHeader.dcCompressedSize > 0 ) {
  1000. var zlibInfo = {
  1001. array: info.array,
  1002. offset: inOffset,
  1003. size: dwaHeader.dcCompressedSize
  1004. };
  1005. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  1006. inOffset.value += dwaHeader.dcCompressedSize;
  1007. }
  1008. // Read RLE compressed data
  1009. if ( dwaHeader.rleRawSize > 0 ) {
  1010. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  1011. var inflate = new Inflate( compressed, { resize: true, verify: true } );
  1012. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  1013. inOffset.value += dwaHeader.rleCompressedSize;
  1014. }
  1015. // Prepare outbuffer data offset
  1016. var outBufferEnd = 0;
  1017. var rowOffsets = new Array( channelData.length );
  1018. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  1019. rowOffsets[ i ] = new Array();
  1020. }
  1021. for ( var y = 0; y < info.lines; ++ y ) {
  1022. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  1023. rowOffsets[ chan ].push( outBufferEnd );
  1024. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  1025. }
  1026. }
  1027. // Lossy DCT decode RGB channels
  1028. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  1029. // Decode other channels
  1030. for ( var i = 0; i < channelData.length; ++ i ) {
  1031. var cd = channelData[ i ];
  1032. if ( cd.decoded ) continue;
  1033. switch ( cd.compression ) {
  1034. case RLE:
  1035. var row = 0;
  1036. var rleOffset = 0;
  1037. for ( var y = 0; y < info.lines; ++ y ) {
  1038. var rowOffsetBytes = rowOffsets[ i ][ row ];
  1039. for ( var x = 0; x < cd.width; ++ x ) {
  1040. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  1041. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  1042. }
  1043. rleOffset ++;
  1044. }
  1045. row ++;
  1046. }
  1047. break;
  1048. case LOSSY_DCT: // skip
  1049. default:
  1050. throw 'EXRLoader.parse: unsupported channel compression';
  1051. }
  1052. }
  1053. return new DataView( outBuffer.buffer );
  1054. }
  1055. function parseNullTerminatedString( buffer, offset ) {
  1056. var uintBuffer = new Uint8Array( buffer );
  1057. var endOffset = 0;
  1058. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  1059. endOffset += 1;
  1060. }
  1061. var stringValue = new TextDecoder().decode(
  1062. uintBuffer.slice( offset.value, offset.value + endOffset )
  1063. );
  1064. offset.value = offset.value + endOffset + 1;
  1065. return stringValue;
  1066. }
  1067. function parseFixedLengthString( buffer, offset, size ) {
  1068. var stringValue = new TextDecoder().decode(
  1069. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  1070. );
  1071. offset.value = offset.value + size;
  1072. return stringValue;
  1073. }
  1074. function parseUlong( dataView, offset ) {
  1075. var uLong = dataView.getUint32( 0, true );
  1076. offset.value = offset.value + ULONG_SIZE;
  1077. return uLong;
  1078. }
  1079. function parseRational( dataView, offset ) {
  1080. var x = parseInt32( dataView, offset );
  1081. var y = parseUint32( dataView, offset );
  1082. return [ x, y ];
  1083. }
  1084. function parseTimecode( dataView, offset ) {
  1085. var x = parseUint32( dataView, offset );
  1086. var y = parseUint32( dataView, offset );
  1087. return [ x, y ];
  1088. }
  1089. function parseInt32( dataView, offset ) {
  1090. var Int32 = dataView.getInt32( offset.value, true );
  1091. offset.value = offset.value + INT32_SIZE;
  1092. return Int32;
  1093. }
  1094. function parseUint32( dataView, offset ) {
  1095. var Uint32 = dataView.getUint32( offset.value, true );
  1096. offset.value = offset.value + INT32_SIZE;
  1097. return Uint32;
  1098. }
  1099. function parseUint8Array( uInt8Array, offset ) {
  1100. var Uint8 = uInt8Array[ offset.value ];
  1101. offset.value = offset.value + INT8_SIZE;
  1102. return Uint8;
  1103. }
  1104. function parseUint8( dataView, offset ) {
  1105. var Uint8 = dataView.getUint8( offset.value );
  1106. offset.value = offset.value + INT8_SIZE;
  1107. return Uint8;
  1108. }
  1109. function parseInt64( dataView, offset ) {
  1110. var int = Number( dataView.getBigInt64( offset.value, true ) );
  1111. offset.value += ULONG_SIZE;
  1112. return int;
  1113. }
  1114. function parseFloat32( dataView, offset ) {
  1115. var float = dataView.getFloat32( offset.value, true );
  1116. offset.value += FLOAT32_SIZE;
  1117. return float;
  1118. }
  1119. function decodeFloat32( dataView, offset ) {
  1120. return encodeFloat16( parseFloat32( dataView, offset ) );
  1121. }
  1122. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1123. function decodeFloat16( binary ) {
  1124. var exponent = ( binary & 0x7C00 ) >> 10,
  1125. fraction = binary & 0x03FF;
  1126. return ( binary >> 15 ? - 1 : 1 ) * (
  1127. exponent ?
  1128. (
  1129. exponent === 0x1F ?
  1130. fraction ? NaN : Infinity :
  1131. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1132. ) :
  1133. 6.103515625e-5 * ( fraction / 0x400 )
  1134. );
  1135. }
  1136. // http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
  1137. function encodeFloat16( val ) {
  1138. /* This method is faster than the OpenEXR implementation (very often
  1139. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  1140. * by James Tursa?s half-precision code.
  1141. */
  1142. tmpDataView.setFloat32( 0, val );
  1143. var x = tmpDataView.getInt32( 0 );
  1144. var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
  1145. var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
  1146. var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
  1147. /* If zero, or denormal, or exponent underflows too much for a denormal
  1148. * half, return signed zero. */
  1149. if ( e < 103 ) return bits;
  1150. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  1151. if ( e > 142 ) {
  1152. bits |= 0x7c00;
  1153. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  1154. * not Inf, so make sure we set one mantissa bit too. */
  1155. bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
  1156. return bits;
  1157. }
  1158. /* If exponent underflows but not too much, return a denormal */
  1159. if ( e < 113 ) {
  1160. m |= 0x0800;
  1161. /* Extra rounding may overflow and set mantissa to 0 and exponent
  1162. * to 1, which is OK. */
  1163. bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
  1164. return bits;
  1165. }
  1166. bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
  1167. /* Extra rounding. An overflow will set mantissa to 0 and increment
  1168. * the exponent, which is OK. */
  1169. bits += m & 1;
  1170. return bits;
  1171. }
  1172. function parseUint16( dataView, offset ) {
  1173. var Uint16 = dataView.getUint16( offset.value, true );
  1174. offset.value += INT16_SIZE;
  1175. return Uint16;
  1176. }
  1177. function parseFloat16( buffer, offset ) {
  1178. return decodeFloat16( parseUint16( buffer, offset ) );
  1179. }
  1180. function parseChlist( dataView, buffer, offset, size ) {
  1181. var startOffset = offset.value;
  1182. var channels = [];
  1183. while ( offset.value < ( startOffset + size - 1 ) ) {
  1184. var name = parseNullTerminatedString( buffer, offset );
  1185. var pixelType = parseInt32( dataView, offset );
  1186. var pLinear = parseUint8( dataView, offset );
  1187. offset.value += 3; // reserved, three chars
  1188. var xSampling = parseInt32( dataView, offset );
  1189. var ySampling = parseInt32( dataView, offset );
  1190. channels.push( {
  1191. name: name,
  1192. pixelType: pixelType,
  1193. pLinear: pLinear,
  1194. xSampling: xSampling,
  1195. ySampling: ySampling
  1196. } );
  1197. }
  1198. offset.value += 1;
  1199. return channels;
  1200. }
  1201. function parseChromaticities( dataView, offset ) {
  1202. var redX = parseFloat32( dataView, offset );
  1203. var redY = parseFloat32( dataView, offset );
  1204. var greenX = parseFloat32( dataView, offset );
  1205. var greenY = parseFloat32( dataView, offset );
  1206. var blueX = parseFloat32( dataView, offset );
  1207. var blueY = parseFloat32( dataView, offset );
  1208. var whiteX = parseFloat32( dataView, offset );
  1209. var whiteY = parseFloat32( dataView, offset );
  1210. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1211. }
  1212. function parseCompression( dataView, offset ) {
  1213. var compressionCodes = [
  1214. 'NO_COMPRESSION',
  1215. 'RLE_COMPRESSION',
  1216. 'ZIPS_COMPRESSION',
  1217. 'ZIP_COMPRESSION',
  1218. 'PIZ_COMPRESSION',
  1219. 'PXR24_COMPRESSION',
  1220. 'B44_COMPRESSION',
  1221. 'B44A_COMPRESSION',
  1222. 'DWAA_COMPRESSION',
  1223. 'DWAB_COMPRESSION'
  1224. ];
  1225. var compression = parseUint8( dataView, offset );
  1226. return compressionCodes[ compression ];
  1227. }
  1228. function parseBox2i( dataView, offset ) {
  1229. var xMin = parseUint32( dataView, offset );
  1230. var yMin = parseUint32( dataView, offset );
  1231. var xMax = parseUint32( dataView, offset );
  1232. var yMax = parseUint32( dataView, offset );
  1233. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1234. }
  1235. function parseLineOrder( dataView, offset ) {
  1236. var lineOrders = [
  1237. 'INCREASING_Y'
  1238. ];
  1239. var lineOrder = parseUint8( dataView, offset );
  1240. return lineOrders[ lineOrder ];
  1241. }
  1242. function parseV2f( dataView, offset ) {
  1243. var x = parseFloat32( dataView, offset );
  1244. var y = parseFloat32( dataView, offset );
  1245. return [ x, y ];
  1246. }
  1247. function parseV3f( dataView, offset ) {
  1248. var x = parseFloat32( dataView, offset );
  1249. var y = parseFloat32( dataView, offset );
  1250. var z = parseFloat32( dataView, offset );
  1251. return [ x, y, z ];
  1252. }
  1253. function parseValue( dataView, buffer, offset, type, size ) {
  1254. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1255. return parseFixedLengthString( buffer, offset, size );
  1256. } else if ( type === 'chlist' ) {
  1257. return parseChlist( dataView, buffer, offset, size );
  1258. } else if ( type === 'chromaticities' ) {
  1259. return parseChromaticities( dataView, offset );
  1260. } else if ( type === 'compression' ) {
  1261. return parseCompression( dataView, offset );
  1262. } else if ( type === 'box2i' ) {
  1263. return parseBox2i( dataView, offset );
  1264. } else if ( type === 'lineOrder' ) {
  1265. return parseLineOrder( dataView, offset );
  1266. } else if ( type === 'float' ) {
  1267. return parseFloat32( dataView, offset );
  1268. } else if ( type === 'v2f' ) {
  1269. return parseV2f( dataView, offset );
  1270. } else if ( type === 'v3f' ) {
  1271. return parseV3f( dataView, offset );
  1272. } else if ( type === 'int' ) {
  1273. return parseInt32( dataView, offset );
  1274. } else if ( type === 'rational' ) {
  1275. return parseRational( dataView, offset );
  1276. } else if ( type === 'timecode' ) {
  1277. return parseTimecode( dataView, offset );
  1278. } else {
  1279. return undefined;
  1280. }
  1281. }
  1282. var bufferDataView = new DataView( buffer );
  1283. var uInt8Array = new Uint8Array( buffer );
  1284. var EXRHeader = {};
  1285. bufferDataView.getUint32( 0, true ); // magic
  1286. bufferDataView.getUint8( 4, true ); // versionByteZero
  1287. bufferDataView.getUint8( 5, true ); // fullMask
  1288. // start of header
  1289. var offset = { value: 8 }; // start at 8, after magic stuff
  1290. var keepReading = true;
  1291. while ( keepReading ) {
  1292. var attributeName = parseNullTerminatedString( buffer, offset );
  1293. if ( attributeName == 0 ) {
  1294. keepReading = false;
  1295. } else {
  1296. var attributeType = parseNullTerminatedString( buffer, offset );
  1297. var attributeSize = parseUint32( bufferDataView, offset );
  1298. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1299. if ( attributeValue === undefined ) {
  1300. console.warn( `EXRLoader.parse: skipped unknown header attribute type \'${attributeType}\'.` );
  1301. offset.value += attributeSize;
  1302. } else {
  1303. EXRHeader[ attributeName ] = attributeValue;
  1304. }
  1305. }
  1306. }
  1307. // offsets
  1308. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1309. var uncompress;
  1310. var scanlineBlockSize;
  1311. switch ( EXRHeader.compression ) {
  1312. case 'NO_COMPRESSION':
  1313. scanlineBlockSize = 1;
  1314. uncompress = uncompressRAW;
  1315. break;
  1316. case 'RLE_COMPRESSION':
  1317. scanlineBlockSize = 1;
  1318. uncompress = uncompressRLE;
  1319. break;
  1320. case 'ZIPS_COMPRESSION':
  1321. scanlineBlockSize = 1;
  1322. uncompress = uncompressZIP;
  1323. break;
  1324. case 'ZIP_COMPRESSION':
  1325. scanlineBlockSize = 16;
  1326. uncompress = uncompressZIP;
  1327. break;
  1328. case 'PIZ_COMPRESSION':
  1329. scanlineBlockSize = 32;
  1330. uncompress = uncompressPIZ;
  1331. break;
  1332. case 'PXR24_COMPRESSION':
  1333. scanlineBlockSize = 16;
  1334. uncompress = uncompressPXR;
  1335. break;
  1336. case 'DWAA_COMPRESSION':
  1337. scanlineBlockSize = 32;
  1338. uncompress = uncompressDWA;
  1339. break;
  1340. case 'DWAB_COMPRESSION':
  1341. scanlineBlockSize = 256;
  1342. uncompress = uncompressDWA;
  1343. break;
  1344. default:
  1345. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1346. }
  1347. var size_t;
  1348. var getValue;
  1349. // mixed pixelType not supported
  1350. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1351. if ( pixelType === 1 ) { // half
  1352. switch ( this.type ) {
  1353. case THREE.UnsignedByteType:
  1354. case THREE.FloatType:
  1355. getValue = parseFloat16;
  1356. size_t = INT16_SIZE;
  1357. break;
  1358. case THREE.HalfFloatType:
  1359. getValue = parseUint16;
  1360. size_t = INT16_SIZE;
  1361. break;
  1362. }
  1363. } else if ( pixelType === 2 ) { // float
  1364. switch ( this.type ) {
  1365. case THREE.UnsignedByteType:
  1366. case THREE.FloatType:
  1367. getValue = parseFloat32;
  1368. size_t = FLOAT32_SIZE;
  1369. break;
  1370. case THREE.HalfFloatType:
  1371. getValue = decodeFloat32;
  1372. size_t = FLOAT32_SIZE;
  1373. }
  1374. } else {
  1375. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1376. }
  1377. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1378. for ( var i = 0; i < numBlocks; i ++ ) {
  1379. parseUlong( bufferDataView, offset ); // scanlineOffset
  1380. }
  1381. // we should be passed the scanline offset table, start reading pixel data
  1382. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1383. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1384. // Firefox only supports RGBA (half) float textures
  1385. // var numChannels = EXRHeader.channels.length;
  1386. var numChannels = 4;
  1387. var size = width * height * numChannels;
  1388. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1389. switch ( this.type ) {
  1390. case THREE.UnsignedByteType:
  1391. case THREE.FloatType:
  1392. var byteArray = new Float32Array( size );
  1393. if ( EXRHeader.channels.length < numChannels ) {
  1394. byteArray.fill( 1, 0, size );
  1395. }
  1396. break;
  1397. case THREE.HalfFloatType:
  1398. var byteArray = new Uint16Array( size );
  1399. if ( EXRHeader.channels.length < numChannels ) {
  1400. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1401. }
  1402. break;
  1403. default:
  1404. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1405. break;
  1406. }
  1407. var channelOffsets = {
  1408. R: 0,
  1409. G: 1,
  1410. B: 2,
  1411. A: 3
  1412. };
  1413. var compressionInfo = {
  1414. size: 0,
  1415. width: width,
  1416. lines: scanlineBlockSize,
  1417. offset: offset,
  1418. array: uInt8Array,
  1419. viewer: bufferDataView,
  1420. type: pixelType,
  1421. channels: EXRHeader.channels.length,
  1422. };
  1423. var line;
  1424. var size;
  1425. var viewer;
  1426. var tmpOffset = { value: 0 };
  1427. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1428. line = parseUint32( bufferDataView, offset ); // line_no
  1429. size = parseUint32( bufferDataView, offset ); // data_len
  1430. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1431. compressionInfo.offset = offset;
  1432. compressionInfo.size = size;
  1433. viewer = uncompress( compressionInfo );
  1434. offset.value += size;
  1435. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1436. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1437. if ( true_y >= height ) break;
  1438. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1439. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1440. for ( var x = 0; x < width; x ++ ) {
  1441. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1442. tmpOffset.value = idx * size_t;
  1443. var val = getValue( viewer, tmpOffset );
  1444. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1445. }
  1446. }
  1447. }
  1448. }
  1449. if ( this.type === THREE.UnsignedByteType ) {
  1450. let v, i;
  1451. const size = byteArray.length;
  1452. const RGBEArray = new Uint8Array( size );
  1453. for ( let h = 0; h < height; ++ h ) {
  1454. for ( let w = 0; w < width; ++ w ) {
  1455. i = h * width * 4 + w * 4;
  1456. const red = byteArray[ i ];
  1457. const green = byteArray[ i + 1 ];
  1458. const blue = byteArray[ i + 2 ];
  1459. v = ( red > green ) ? red : green;
  1460. v = ( blue > v ) ? blue : v;
  1461. if ( v < 1e-32 ) {
  1462. RGBEArray[ i ] = RGBEArray[ i + 1 ] = RGBEArray[ i + 2 ] = RGBEArray[ i + 3 ] = 0;
  1463. } else {
  1464. const res = frexp( v );
  1465. v = res[ 0 ] * 256 / v;
  1466. RGBEArray[ i ] = red * v;
  1467. RGBEArray[ i + 1 ] = green * v;
  1468. RGBEArray[ i + 2 ] = blue * v;
  1469. RGBEArray[ i + 3 ] = res[ 1 ] + 128;
  1470. }
  1471. }
  1472. }
  1473. byteArray = RGBEArray;
  1474. }
  1475. let format = ( this.type === THREE.UnsignedByteType ) ? THREE.RGBEFormat : ( numChannels === 4 ) ? THREE.RGBAFormat : THREE.RGBFormat;
  1476. return {
  1477. header: EXRHeader,
  1478. width: width,
  1479. height: height,
  1480. data: byteArray,
  1481. format: format,
  1482. type: this.type
  1483. };
  1484. },
  1485. setDataType: function ( value ) {
  1486. this.type = value;
  1487. return this;
  1488. },
  1489. load: function ( url, onLoad, onProgress, onError ) {
  1490. function onLoadCallback( texture, texData ) {
  1491. switch ( texture.type ) {
  1492. case THREE.UnsignedByteType:
  1493. texture.encoding = THREE.RGBEEncoding;
  1494. texture.minFilter = THREE.NearestFilter;
  1495. texture.magFilter = THREE.NearestFilter;
  1496. texture.generateMipmaps = false;
  1497. texture.flipY = false;
  1498. break;
  1499. case THREE.FloatType:
  1500. case THREE.HalfFloatType:
  1501. texture.encoding = THREE.LinearEncoding;
  1502. texture.minFilter = THREE.LinearFilter;
  1503. texture.magFilter = THREE.LinearFilter;
  1504. texture.generateMipmaps = false;
  1505. texture.flipY = false;
  1506. break;
  1507. }
  1508. if ( onLoad ) onLoad( texture, texData );
  1509. }
  1510. return THREE.DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1511. }
  1512. } );