TypedArrayUtils.js 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. THREE.TypedArrayUtils = {};
  2. /**
  3. * In-place quicksort for typed arrays (e.g. for Float32Array)
  4. * provides fast sorting
  5. * useful e.g. for a custom shader and/or BufferGeometry
  6. *
  7. * @author Roman Bolzern <[email protected]>, 2013
  8. * @author I4DS http://www.fhnw.ch/i4ds, 2013
  9. * @license MIT License <http://www.opensource.org/licenses/mit-license.php>
  10. *
  11. * Complexity: http://bigocheatsheet.com/ see Quicksort
  12. *
  13. * Example:
  14. * points: [x, y, z, x, y, z, x, y, z, ...]
  15. * eleSize: 3 //because of (x, y, z)
  16. * orderElement: 0 //order according to x
  17. */
  18. THREE.TypedArrayUtils.quicksortIP = function ( arr, eleSize, orderElement ) {
  19. var stack = [];
  20. var sp = -1;
  21. var left = 0;
  22. var right = arr.length / eleSize - 1;
  23. var tmp = 0.0, x = 0, y = 0;
  24. var swapF = function ( a, b ) {
  25. a *= eleSize; b *= eleSize;
  26. for ( y = 0; y < eleSize; y ++ ) {
  27. tmp = arr[ a + y ];
  28. arr[ a + y ] = arr[ b + y ];
  29. arr[ b + y ] = tmp;
  30. }
  31. };
  32. var i, j, swap = new Float32Array( eleSize ), temp = new Float32Array( eleSize );
  33. while ( true ) {
  34. if ( right - left <= 25 ) {
  35. for ( j = left + 1; j <= right; j ++ ) {
  36. for ( x = 0; x < eleSize; x ++ ) {
  37. swap[ x ] = arr[ j * eleSize + x ];
  38. }
  39. i = j - 1;
  40. while ( i >= left && arr[ i * eleSize + orderElement ] > swap[orderElement ] ) {
  41. for ( x = 0; x < eleSize; x ++ ) {
  42. arr[ ( i + 1 ) * eleSize + x ] = arr[ i * eleSize + x ];
  43. }
  44. i --;
  45. }
  46. for ( x = 0; x < eleSize; x ++ ) {
  47. arr[ ( i + 1 ) * eleSize + x ] = swap[ x ];
  48. }
  49. }
  50. if ( sp == -1 ) break;
  51. right = stack[ sp -- ]; //?
  52. left = stack[ sp -- ];
  53. } else {
  54. var median = ( left + right ) >> 1;
  55. i = left + 1;
  56. j = right;
  57. swapF( median, i );
  58. if ( arr[ left * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
  59. swapF( left, right );
  60. }
  61. if ( arr[ i * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
  62. swapF( i, right );
  63. }
  64. if ( arr[ left * eleSize + orderElement ] > arr[ i * eleSize + orderElement ] ) {
  65. swapF( left, i );
  66. }
  67. for ( x = 0; x < eleSize; x ++ ) {
  68. temp[ x ] = arr[ i * eleSize + x ];
  69. }
  70. while ( true ) {
  71. do i ++; while ( arr[ i * eleSize + orderElement ] < temp[ orderElement ] );
  72. do j --; while ( arr[ j * eleSize + orderElement ] > temp[ orderElement ] );
  73. if ( j < i ) break;
  74. swapF( i, j );
  75. }
  76. for ( x = 0; x < eleSize; x ++ ) {
  77. arr[ ( left + 1 ) * eleSize + x ] = arr[ j * eleSize + x ];
  78. arr[ j * eleSize + x ] = temp[ x ];
  79. }
  80. if ( right - i + 1 >= j - left ) {
  81. stack[ ++ sp ] = i;
  82. stack[ ++ sp ] = right;
  83. right = j - 1;
  84. } else {
  85. stack[ ++ sp ] = left;
  86. stack[ ++ sp ] = j - 1;
  87. left = i;
  88. }
  89. }
  90. }
  91. return arr;
  92. };
  93. /**
  94. * k-d Tree for typed arrays (e.g. for Float32Array), in-place
  95. * provides fast nearest neighbour search
  96. * useful e.g. for a custom shader and/or BufferGeometry, saves tons of memory
  97. * has no insert and remove, only buildup and neares neighbour search
  98. *
  99. * Based on https://github.com/ubilabs/kd-tree-javascript by Ubilabs
  100. *
  101. * @author Roman Bolzern <[email protected]>, 2013
  102. * @author I4DS http://www.fhnw.ch/i4ds, 2013
  103. * @license MIT License <http://www.opensource.org/licenses/mit-license.php>
  104. *
  105. * Requires typed array quicksort
  106. *
  107. * Example:
  108. * points: [x, y, z, x, y, z, x, y, z, ...]
  109. * metric: function(a, b){ return Math.pow(a[0] - b[0], 2) + Math.pow(a[1] - b[1], 2) + Math.pow(a[2] - b[2], 2); } //Manhatten distance
  110. * eleSize: 3 //because of (x, y, z)
  111. *
  112. * Further information (including mathematical properties)
  113. * http://en.wikipedia.org/wiki/Binary_tree
  114. * http://en.wikipedia.org/wiki/K-d_tree
  115. *
  116. * If you want to further minimize memory usage, remove Node.depth and replace in search algorithm with a traversal to root node (see comments at THREE.TypedArrayUtils.Kdtree.prototype.Node)
  117. */
  118. THREE.TypedArrayUtils.Kdtree = function ( points, metric, eleSize ) {
  119. var self = this;
  120. var maxDepth = 0;
  121. var getPointSet = function ( points, pos ) {
  122. return points.subarray( pos * eleSize, pos * eleSize + eleSize );
  123. };
  124. function buildTree( points, depth, parent, pos ) {
  125. var dim = depth % eleSize,
  126. median,
  127. node,
  128. plength = points.length / eleSize;
  129. if ( depth > maxDepth ) maxDepth = depth;
  130. if ( plength === 0 ) return null;
  131. if ( plength === 1 ) {
  132. return new self.Node( getPointSet( points, 0 ), depth, parent, pos );
  133. }
  134. THREE.TypedArrayUtils.quicksortIP( points, eleSize, dim );
  135. median = Math.floor( plength / 2 );
  136. node = new self.Node( getPointSet( points, median ), depth, parent, median + pos );
  137. node.left = buildTree( points.subarray( 0, median * eleSize), depth + 1, node, pos );
  138. node.right = buildTree( points.subarray( ( median + 1 ) * eleSize, points.length ), depth + 1, node, pos + median + 1 );
  139. return node;
  140. }
  141. this.root = buildTree( points, 0, null, 0 );
  142. this.getMaxDepth = function () { return maxDepth; };
  143. this.nearest = function ( point, maxNodes, maxDistance ) {
  144. /* point: array of size eleSize
  145. maxNodes: max amount of nodes to return
  146. maxDistance: maximum distance to point result nodes should have
  147. condition (not implemented): function to test node before it's added to the result list, e.g. test for view frustum
  148. */
  149. var i,
  150. result,
  151. bestNodes;
  152. bestNodes = new THREE.TypedArrayUtils.Kdtree.BinaryHeap(
  153. function ( e ) { return -e[ 1 ]; }
  154. );
  155. function nearestSearch( node ) {
  156. var bestChild,
  157. dimension = node.depth % eleSize,
  158. ownDistance = metric(point, node.obj),
  159. linearDistance = 0,
  160. otherChild,
  161. i,
  162. linearPoint = [];
  163. function saveNode( node, distance ) {
  164. bestNodes.push( [ node, distance ] );
  165. if ( bestNodes.size() > maxNodes ) {
  166. bestNodes.pop();
  167. }
  168. }
  169. for ( i = 0; i < eleSize; i += 1 ) {
  170. if ( i === node.depth % eleSize ) {
  171. linearPoint[ i ] = point[ i ];
  172. } else {
  173. linearPoint[ i ] = node.obj[ i ];
  174. }
  175. }
  176. linearDistance = metric( linearPoint, node.obj );
  177. // if it's a leaf
  178. if ( node.right === null && node.left === null ) {
  179. if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
  180. saveNode( node, ownDistance );
  181. }
  182. return;
  183. }
  184. if ( node.right === null ) {
  185. bestChild = node.left;
  186. } else if ( node.left === null ) {
  187. bestChild = node.right;
  188. } else {
  189. if ( point[ dimension ] < node.obj[ dimension ] ) {
  190. bestChild = node.left;
  191. } else {
  192. bestChild = node.right;
  193. }
  194. }
  195. // recursive search
  196. nearestSearch( bestChild );
  197. if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
  198. saveNode( node, ownDistance );
  199. }
  200. // if there's still room or the current distance is nearer than the best distance
  201. if ( bestNodes.size() < maxNodes || Math.abs(linearDistance) < bestNodes.peek()[ 1 ] ) {
  202. if ( bestChild === node.left ) {
  203. otherChild = node.right;
  204. } else {
  205. otherChild = node.left;
  206. }
  207. if ( otherChild !== null ) {
  208. nearestSearch( otherChild );
  209. }
  210. }
  211. }
  212. if ( maxDistance ) {
  213. for ( i = 0; i < maxNodes; i += 1 ) {
  214. bestNodes.push( [ null, maxDistance ] );
  215. }
  216. }
  217. nearestSearch( self.root );
  218. result = [];
  219. for ( i = 0; i < maxNodes; i += 1 ) {
  220. if ( bestNodes.content[ i ][ 0 ] ) {
  221. result.push( [ bestNodes.content[ i ][ 0 ], bestNodes.content[ i ][ 1 ] ] );
  222. }
  223. }
  224. return result;
  225. };
  226. };
  227. /**
  228. * If you need to free up additional memory and agree with an additional O( log n ) traversal time you can get rid of "depth" and "pos" in Node:
  229. * Depth can be easily done by adding 1 for every parent (care: root node has depth 0, not 1)
  230. * Pos is a bit tricky: Assuming the tree is balanced (which is the case when after we built it up), perform the following steps:
  231. * By traversing to the root store the path e.g. in a bit pattern (01001011, 0 is left, 1 is right)
  232. * From buildTree we know that "median = Math.floor( plength / 2 );", therefore for each bit...
  233. * 0: amountOfNodesRelevantForUs = Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
  234. * 1: amountOfNodesRelevantForUs = Math.ceil( (pamountOfNodesRelevantForUs - 1) / 2 );
  235. * pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
  236. * when recursion done, we still need to add all left children of target node:
  237. * pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
  238. * and I think you need to +1 for the current position, not sure.. depends, try it out ^^
  239. *
  240. * I experienced that for 200'000 nodes you can get rid of 4 MB memory each, leading to 8 MB memory saved.
  241. */
  242. THREE.TypedArrayUtils.Kdtree.prototype.Node = function ( obj, depth, parent, pos ) {
  243. this.obj = obj;
  244. this.left = null;
  245. this.right = null;
  246. this.parent = parent;
  247. this.depth = depth;
  248. this.pos = pos;
  249. };
  250. /**
  251. * Binary heap implementation
  252. * @author http://eloquentjavascript.net/appendix2.htm
  253. */
  254. THREE.TypedArrayUtils.Kdtree.BinaryHeap = function ( scoreFunction ) {
  255. this.content = [];
  256. this.scoreFunction = scoreFunction;
  257. };
  258. THREE.TypedArrayUtils.Kdtree.BinaryHeap.prototype = {
  259. push: function ( element ) {
  260. // Add the new element to the end of the array.
  261. this.content.push( element );
  262. // Allow it to bubble up.
  263. this.bubbleUp( this.content.length - 1 );
  264. },
  265. pop: function () {
  266. // Store the first element so we can return it later.
  267. var result = this.content[ 0 ];
  268. // Get the element at the end of the array.
  269. var end = this.content.pop();
  270. // If there are any elements left, put the end element at the
  271. // start, and let it sink down.
  272. if ( this.content.length > 0 ) {
  273. this.content[ 0 ] = end;
  274. this.sinkDown( 0 );
  275. }
  276. return result;
  277. },
  278. peek: function () {
  279. return this.content[ 0 ];
  280. },
  281. remove: function ( node ) {
  282. var len = this.content.length;
  283. // To remove a value, we must search through the array to find it.
  284. for ( var i = 0; i < len; i ++ ) {
  285. if ( this.content[ i ] == node ) {
  286. // When it is found, the process seen in 'pop' is repeated
  287. // to fill up the hole.
  288. var end = this.content.pop();
  289. if ( i != len - 1 ) {
  290. this.content[ i ] = end;
  291. if ( this.scoreFunction( end ) < this.scoreFunction( node ) ) {
  292. this.bubbleUp( i );
  293. } else {
  294. this.sinkDown( i );
  295. }
  296. }
  297. return;
  298. }
  299. }
  300. throw new Error( "Node not found." );
  301. },
  302. size: function () {
  303. return this.content.length;
  304. },
  305. bubbleUp: function ( n ) {
  306. // Fetch the element that has to be moved.
  307. var element = this.content[ n ];
  308. // When at 0, an element can not go up any further.
  309. while ( n > 0 ) {
  310. // Compute the parent element's index, and fetch it.
  311. var parentN = Math.floor( ( n + 1 ) / 2 ) - 1,
  312. parent = this.content[ parentN ];
  313. // Swap the elements if the parent is greater.
  314. if ( this.scoreFunction( element ) < this.scoreFunction( parent ) ) {
  315. this.content[ parentN ] = element;
  316. this.content[ n ] = parent;
  317. // Update 'n' to continue at the new position.
  318. n = parentN;
  319. } else {
  320. // Found a parent that is less, no need to move it further.
  321. break;
  322. }
  323. }
  324. },
  325. sinkDown: function ( n ) {
  326. // Look up the target element and its score.
  327. var length = this.content.length,
  328. element = this.content[ n ],
  329. elemScore = this.scoreFunction( element );
  330. while ( true ) {
  331. // Compute the indices of the child elements.
  332. var child2N = ( n + 1 ) * 2, child1N = child2N - 1;
  333. // This is used to store the new position of the element, if any.
  334. var swap = null;
  335. // If the first child exists (is inside the array)...
  336. if ( child1N < length ) {
  337. // Look it up and compute its score.
  338. var child1 = this.content[ child1N ],
  339. child1Score = this.scoreFunction( child1 );
  340. // If the score is less than our element's, we need to swap.
  341. if ( child1Score < elemScore ) swap = child1N;
  342. }
  343. // Do the same checks for the other child.
  344. if ( child2N < length ) {
  345. var child2 = this.content[ child2N ],
  346. child2Score = this.scoreFunction( child2 );
  347. if ( child2Score < ( swap === null ? elemScore : child1Score ) ) swap = child2N;
  348. }
  349. // If the element needs to be moved, swap it, and continue.
  350. if ( swap !== null ) {
  351. this.content[ n ] = this.content[ swap ];
  352. this.content[ swap ] = element;
  353. n = swap;
  354. } else {
  355. // Otherwise, we are done.
  356. break;
  357. }
  358. }
  359. }
  360. };