123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644 |
- import { MathUtils } from './MathUtils.js';
- class Quaternion {
- constructor( x = 0, y = 0, z = 0, w = 1 ) {
- this._x = x;
- this._y = y;
- this._z = z;
- this._w = w;
- }
- static slerp( qa, qb, qm, t ) {
- return qm.copy( qa ).slerp( qb, t );
- }
- static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
- // fuzz-free, array-based Quaternion SLERP operation
- let x0 = src0[ srcOffset0 + 0 ],
- y0 = src0[ srcOffset0 + 1 ],
- z0 = src0[ srcOffset0 + 2 ],
- w0 = src0[ srcOffset0 + 3 ];
- const x1 = src1[ srcOffset1 + 0 ],
- y1 = src1[ srcOffset1 + 1 ],
- z1 = src1[ srcOffset1 + 2 ],
- w1 = src1[ srcOffset1 + 3 ];
- if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
- let s = 1 - t;
- const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
- dir = ( cos >= 0 ? 1 : - 1 ),
- sqrSin = 1 - cos * cos;
- // Skip the Slerp for tiny steps to avoid numeric problems:
- if ( sqrSin > Number.EPSILON ) {
- const sin = Math.sqrt( sqrSin ),
- len = Math.atan2( sin, cos * dir );
- s = Math.sin( s * len ) / sin;
- t = Math.sin( t * len ) / sin;
- }
- const tDir = t * dir;
- x0 = x0 * s + x1 * tDir;
- y0 = y0 * s + y1 * tDir;
- z0 = z0 * s + z1 * tDir;
- w0 = w0 * s + w1 * tDir;
- // Normalize in case we just did a lerp:
- if ( s === 1 - t ) {
- const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
- x0 *= f;
- y0 *= f;
- z0 *= f;
- w0 *= f;
- }
- }
- dst[ dstOffset ] = x0;
- dst[ dstOffset + 1 ] = y0;
- dst[ dstOffset + 2 ] = z0;
- dst[ dstOffset + 3 ] = w0;
- }
- static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) {
- const x0 = src0[ srcOffset0 ];
- const y0 = src0[ srcOffset0 + 1 ];
- const z0 = src0[ srcOffset0 + 2 ];
- const w0 = src0[ srcOffset0 + 3 ];
- const x1 = src1[ srcOffset1 ];
- const y1 = src1[ srcOffset1 + 1 ];
- const z1 = src1[ srcOffset1 + 2 ];
- const w1 = src1[ srcOffset1 + 3 ];
- dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
- dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
- dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
- dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
- return dst;
- }
- get x() {
- return this._x;
- }
- set x( value ) {
- this._x = value;
- this._onChangeCallback();
- }
- get y() {
- return this._y;
- }
- set y( value ) {
- this._y = value;
- this._onChangeCallback();
- }
- get z() {
- return this._z;
- }
- set z( value ) {
- this._z = value;
- this._onChangeCallback();
- }
- get w() {
- return this._w;
- }
- set w( value ) {
- this._w = value;
- this._onChangeCallback();
- }
- set( x, y, z, w ) {
- this._x = x;
- this._y = y;
- this._z = z;
- this._w = w;
- this._onChangeCallback();
- return this;
- }
- clone() {
- return new this.constructor( this._x, this._y, this._z, this._w );
- }
- copy( quaternion ) {
- this._x = quaternion.x;
- this._y = quaternion.y;
- this._z = quaternion.z;
- this._w = quaternion.w;
- this._onChangeCallback();
- return this;
- }
- setFromEuler( euler, update ) {
- if ( ! ( euler && euler.isEuler ) ) {
- throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );
- }
- const x = euler._x, y = euler._y, z = euler._z, order = euler._order;
- // http://www.mathworks.com/matlabcentral/fileexchange/
- // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
- // content/SpinCalc.m
- const cos = Math.cos;
- const sin = Math.sin;
- const c1 = cos( x / 2 );
- const c2 = cos( y / 2 );
- const c3 = cos( z / 2 );
- const s1 = sin( x / 2 );
- const s2 = sin( y / 2 );
- const s3 = sin( z / 2 );
- switch ( order ) {
- case 'XYZ':
- this._x = s1 * c2 * c3 + c1 * s2 * s3;
- this._y = c1 * s2 * c3 - s1 * c2 * s3;
- this._z = c1 * c2 * s3 + s1 * s2 * c3;
- this._w = c1 * c2 * c3 - s1 * s2 * s3;
- break;
- case 'YXZ':
- this._x = s1 * c2 * c3 + c1 * s2 * s3;
- this._y = c1 * s2 * c3 - s1 * c2 * s3;
- this._z = c1 * c2 * s3 - s1 * s2 * c3;
- this._w = c1 * c2 * c3 + s1 * s2 * s3;
- break;
- case 'ZXY':
- this._x = s1 * c2 * c3 - c1 * s2 * s3;
- this._y = c1 * s2 * c3 + s1 * c2 * s3;
- this._z = c1 * c2 * s3 + s1 * s2 * c3;
- this._w = c1 * c2 * c3 - s1 * s2 * s3;
- break;
- case 'ZYX':
- this._x = s1 * c2 * c3 - c1 * s2 * s3;
- this._y = c1 * s2 * c3 + s1 * c2 * s3;
- this._z = c1 * c2 * s3 - s1 * s2 * c3;
- this._w = c1 * c2 * c3 + s1 * s2 * s3;
- break;
- case 'YZX':
- this._x = s1 * c2 * c3 + c1 * s2 * s3;
- this._y = c1 * s2 * c3 + s1 * c2 * s3;
- this._z = c1 * c2 * s3 - s1 * s2 * c3;
- this._w = c1 * c2 * c3 - s1 * s2 * s3;
- break;
- case 'XZY':
- this._x = s1 * c2 * c3 - c1 * s2 * s3;
- this._y = c1 * s2 * c3 - s1 * c2 * s3;
- this._z = c1 * c2 * s3 + s1 * s2 * c3;
- this._w = c1 * c2 * c3 + s1 * s2 * s3;
- break;
- default:
- console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order );
- }
- if ( update !== false ) this._onChangeCallback();
- return this;
- }
- setFromAxisAngle( axis, angle ) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
- // assumes axis is normalized
- const halfAngle = angle / 2, s = Math.sin( halfAngle );
- this._x = axis.x * s;
- this._y = axis.y * s;
- this._z = axis.z * s;
- this._w = Math.cos( halfAngle );
- this._onChangeCallback();
- return this;
- }
- setFromRotationMatrix( m ) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
- // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
- const te = m.elements,
- m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
- m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
- m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
- trace = m11 + m22 + m33;
- if ( trace > 0 ) {
- const s = 0.5 / Math.sqrt( trace + 1.0 );
- this._w = 0.25 / s;
- this._x = ( m32 - m23 ) * s;
- this._y = ( m13 - m31 ) * s;
- this._z = ( m21 - m12 ) * s;
- } else if ( m11 > m22 && m11 > m33 ) {
- const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
- this._w = ( m32 - m23 ) / s;
- this._x = 0.25 * s;
- this._y = ( m12 + m21 ) / s;
- this._z = ( m13 + m31 ) / s;
- } else if ( m22 > m33 ) {
- const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
- this._w = ( m13 - m31 ) / s;
- this._x = ( m12 + m21 ) / s;
- this._y = 0.25 * s;
- this._z = ( m23 + m32 ) / s;
- } else {
- const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
- this._w = ( m21 - m12 ) / s;
- this._x = ( m13 + m31 ) / s;
- this._y = ( m23 + m32 ) / s;
- this._z = 0.25 * s;
- }
- this._onChangeCallback();
- return this;
- }
- setFromUnitVectors( vFrom, vTo ) {
- // assumes direction vectors vFrom and vTo are normalized
- const EPS = 0.000001;
- let r = vFrom.dot( vTo ) + 1;
- if ( r < EPS ) {
- r = 0;
- if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
- this._x = - vFrom.y;
- this._y = vFrom.x;
- this._z = 0;
- this._w = r;
- } else {
- this._x = 0;
- this._y = - vFrom.z;
- this._z = vFrom.y;
- this._w = r;
- }
- } else {
- // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
- this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
- this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
- this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
- this._w = r;
- }
- return this.normalize();
- }
- angleTo( q ) {
- return 2 * Math.acos( Math.abs( MathUtils.clamp( this.dot( q ), - 1, 1 ) ) );
- }
- rotateTowards( q, step ) {
- const angle = this.angleTo( q );
- if ( angle === 0 ) return this;
- const t = Math.min( 1, step / angle );
- this.slerp( q, t );
- return this;
- }
- identity() {
- return this.set( 0, 0, 0, 1 );
- }
- inverse() {
- // quaternion is assumed to have unit length
- return this.conjugate();
- }
- conjugate() {
- this._x *= - 1;
- this._y *= - 1;
- this._z *= - 1;
- this._onChangeCallback();
- return this;
- }
- dot( v ) {
- return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
- }
- lengthSq() {
- return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
- }
- length() {
- return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
- }
- normalize() {
- let l = this.length();
- if ( l === 0 ) {
- this._x = 0;
- this._y = 0;
- this._z = 0;
- this._w = 1;
- } else {
- l = 1 / l;
- this._x = this._x * l;
- this._y = this._y * l;
- this._z = this._z * l;
- this._w = this._w * l;
- }
- this._onChangeCallback();
- return this;
- }
- multiply( q, p ) {
- if ( p !== undefined ) {
- console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
- return this.multiplyQuaternions( q, p );
- }
- return this.multiplyQuaternions( this, q );
- }
- premultiply( q ) {
- return this.multiplyQuaternions( q, this );
- }
- multiplyQuaternions( a, b ) {
- // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
- const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
- const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
- this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
- this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
- this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
- this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
- this._onChangeCallback();
- return this;
- }
- slerp( qb, t ) {
- if ( t === 0 ) return this;
- if ( t === 1 ) return this.copy( qb );
- const x = this._x, y = this._y, z = this._z, w = this._w;
- // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
- let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
- if ( cosHalfTheta < 0 ) {
- this._w = - qb._w;
- this._x = - qb._x;
- this._y = - qb._y;
- this._z = - qb._z;
- cosHalfTheta = - cosHalfTheta;
- } else {
- this.copy( qb );
- }
- if ( cosHalfTheta >= 1.0 ) {
- this._w = w;
- this._x = x;
- this._y = y;
- this._z = z;
- return this;
- }
- const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
- if ( sqrSinHalfTheta <= Number.EPSILON ) {
- const s = 1 - t;
- this._w = s * w + t * this._w;
- this._x = s * x + t * this._x;
- this._y = s * y + t * this._y;
- this._z = s * z + t * this._z;
- this.normalize();
- this._onChangeCallback();
- return this;
- }
- const sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
- const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
- const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
- ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
- this._w = ( w * ratioA + this._w * ratioB );
- this._x = ( x * ratioA + this._x * ratioB );
- this._y = ( y * ratioA + this._y * ratioB );
- this._z = ( z * ratioA + this._z * ratioB );
- this._onChangeCallback();
- return this;
- }
- equals( quaternion ) {
- return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
- }
- fromArray( array, offset ) {
- if ( offset === undefined ) offset = 0;
- this._x = array[ offset ];
- this._y = array[ offset + 1 ];
- this._z = array[ offset + 2 ];
- this._w = array[ offset + 3 ];
- this._onChangeCallback();
- return this;
- }
- toArray( array, offset ) {
- if ( array === undefined ) array = [];
- if ( offset === undefined ) offset = 0;
- array[ offset ] = this._x;
- array[ offset + 1 ] = this._y;
- array[ offset + 2 ] = this._z;
- array[ offset + 3 ] = this._w;
- return array;
- }
- fromBufferAttribute( attribute, index ) {
- this._x = attribute.getX( index );
- this._y = attribute.getY( index );
- this._z = attribute.getZ( index );
- this._w = attribute.getW( index );
- return this;
- }
- _onChange( callback ) {
- this._onChangeCallback = callback;
- return this;
- }
- _onChangeCallback() {}
- }
- Quaternion.prototype.isQuaternion = true;
- export { Quaternion };
|