123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534 |
- import { Vector3 } from './Vector3.js';
- class Box3 {
- constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) {
- this.isBox3 = true;
- this.min = min;
- this.max = max;
- }
- set( min, max ) {
- this.min.copy( min );
- this.max.copy( max );
- return this;
- }
- setFromArray( array ) {
- this.makeEmpty();
- for ( let i = 0, il = array.length; i < il; i += 3 ) {
- this.expandByPoint( _vector.fromArray( array, i ) );
- }
- return this;
- }
- setFromBufferAttribute( attribute ) {
- this.makeEmpty();
- for ( let i = 0, il = attribute.count; i < il; i ++ ) {
- this.expandByPoint( _vector.fromBufferAttribute( attribute, i ) );
- }
- return this;
- }
- setFromPoints( points ) {
- this.makeEmpty();
- for ( let i = 0, il = points.length; i < il; i ++ ) {
- this.expandByPoint( points[ i ] );
- }
- return this;
- }
- setFromCenterAndSize( center, size ) {
- const halfSize = _vector.copy( size ).multiplyScalar( 0.5 );
- this.min.copy( center ).sub( halfSize );
- this.max.copy( center ).add( halfSize );
- return this;
- }
- setFromObject( object, precise = false ) {
- this.makeEmpty();
- return this.expandByObject( object, precise );
- }
- clone() {
- return new this.constructor().copy( this );
- }
- copy( box ) {
- this.min.copy( box.min );
- this.max.copy( box.max );
- return this;
- }
- makeEmpty() {
- this.min.x = this.min.y = this.min.z = + Infinity;
- this.max.x = this.max.y = this.max.z = - Infinity;
- return this;
- }
- isEmpty() {
- // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
- return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
- }
- getCenter( target ) {
- return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
- }
- getSize( target ) {
- return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );
- }
- expandByPoint( point ) {
- this.min.min( point );
- this.max.max( point );
- return this;
- }
- expandByVector( vector ) {
- this.min.sub( vector );
- this.max.add( vector );
- return this;
- }
- expandByScalar( scalar ) {
- this.min.addScalar( - scalar );
- this.max.addScalar( scalar );
- return this;
- }
- expandByObject( object, precise = false ) {
- // Computes the world-axis-aligned bounding box of an object (including its children),
- // accounting for both the object's, and children's, world transforms
- object.updateWorldMatrix( false, false );
- const geometry = object.geometry;
- if ( geometry !== undefined ) {
- const positionAttribute = geometry.getAttribute( 'position' );
- // precise AABB computation based on vertex data requires at least a position attribute.
- // instancing isn't supported so far and uses the normal (conservative) code path.
- if ( precise === true && positionAttribute !== undefined && object.isInstancedMesh !== true ) {
- for ( let i = 0, l = positionAttribute.count; i < l; i ++ ) {
- if ( object.isMesh === true ) {
- object.getVertexPosition( i, _vector );
- } else {
- _vector.fromBufferAttribute( positionAttribute, i );
- }
- _vector.applyMatrix4( object.matrixWorld );
- this.expandByPoint( _vector );
- }
- } else {
- if ( object.boundingBox !== undefined ) {
- // object-level bounding box
- if ( object.boundingBox === null ) {
- object.computeBoundingBox();
- }
- _box.copy( object.boundingBox );
- } else {
- // geometry-level bounding box
- if ( geometry.boundingBox === null ) {
- geometry.computeBoundingBox();
- }
- _box.copy( geometry.boundingBox );
- }
- _box.applyMatrix4( object.matrixWorld );
- this.union( _box );
- }
- }
- const children = object.children;
- for ( let i = 0, l = children.length; i < l; i ++ ) {
- this.expandByObject( children[ i ], precise );
- }
- return this;
- }
- containsPoint( point ) {
- return point.x < this.min.x || point.x > this.max.x ||
- point.y < this.min.y || point.y > this.max.y ||
- point.z < this.min.z || point.z > this.max.z ? false : true;
- }
- containsBox( box ) {
- return this.min.x <= box.min.x && box.max.x <= this.max.x &&
- this.min.y <= box.min.y && box.max.y <= this.max.y &&
- this.min.z <= box.min.z && box.max.z <= this.max.z;
- }
- getParameter( point, target ) {
- // This can potentially have a divide by zero if the box
- // has a size dimension of 0.
- return target.set(
- ( point.x - this.min.x ) / ( this.max.x - this.min.x ),
- ( point.y - this.min.y ) / ( this.max.y - this.min.y ),
- ( point.z - this.min.z ) / ( this.max.z - this.min.z )
- );
- }
- intersectsBox( box ) {
- // using 6 splitting planes to rule out intersections.
- return box.max.x < this.min.x || box.min.x > this.max.x ||
- box.max.y < this.min.y || box.min.y > this.max.y ||
- box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
- }
- intersectsSphere( sphere ) {
- // Find the point on the AABB closest to the sphere center.
- this.clampPoint( sphere.center, _vector );
- // If that point is inside the sphere, the AABB and sphere intersect.
- return _vector.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
- }
- intersectsPlane( plane ) {
- // We compute the minimum and maximum dot product values. If those values
- // are on the same side (back or front) of the plane, then there is no intersection.
- let min, max;
- if ( plane.normal.x > 0 ) {
- min = plane.normal.x * this.min.x;
- max = plane.normal.x * this.max.x;
- } else {
- min = plane.normal.x * this.max.x;
- max = plane.normal.x * this.min.x;
- }
- if ( plane.normal.y > 0 ) {
- min += plane.normal.y * this.min.y;
- max += plane.normal.y * this.max.y;
- } else {
- min += plane.normal.y * this.max.y;
- max += plane.normal.y * this.min.y;
- }
- if ( plane.normal.z > 0 ) {
- min += plane.normal.z * this.min.z;
- max += plane.normal.z * this.max.z;
- } else {
- min += plane.normal.z * this.max.z;
- max += plane.normal.z * this.min.z;
- }
- return ( min <= - plane.constant && max >= - plane.constant );
- }
- intersectsTriangle( triangle ) {
- if ( this.isEmpty() ) {
- return false;
- }
- // compute box center and extents
- this.getCenter( _center );
- _extents.subVectors( this.max, _center );
- // translate triangle to aabb origin
- _v0.subVectors( triangle.a, _center );
- _v1.subVectors( triangle.b, _center );
- _v2.subVectors( triangle.c, _center );
- // compute edge vectors for triangle
- _f0.subVectors( _v1, _v0 );
- _f1.subVectors( _v2, _v1 );
- _f2.subVectors( _v0, _v2 );
- // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
- // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
- // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
- let axes = [
- 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y,
- _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x,
- - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0
- ];
- if ( ! satForAxes( axes, _v0, _v1, _v2, _extents ) ) {
- return false;
- }
- // test 3 face normals from the aabb
- axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
- if ( ! satForAxes( axes, _v0, _v1, _v2, _extents ) ) {
- return false;
- }
- // finally testing the face normal of the triangle
- // use already existing triangle edge vectors here
- _triangleNormal.crossVectors( _f0, _f1 );
- axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ];
- return satForAxes( axes, _v0, _v1, _v2, _extents );
- }
- clampPoint( point, target ) {
- return target.copy( point ).clamp( this.min, this.max );
- }
- distanceToPoint( point ) {
- return this.clampPoint( point, _vector ).distanceTo( point );
- }
- getBoundingSphere( target ) {
- if ( this.isEmpty() ) {
- target.makeEmpty();
- } else {
- this.getCenter( target.center );
- target.radius = this.getSize( _vector ).length() * 0.5;
- }
- return target;
- }
- intersect( box ) {
- this.min.max( box.min );
- this.max.min( box.max );
- // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
- if ( this.isEmpty() ) this.makeEmpty();
- return this;
- }
- union( box ) {
- this.min.min( box.min );
- this.max.max( box.max );
- return this;
- }
- applyMatrix4( matrix ) {
- // transform of empty box is an empty box.
- if ( this.isEmpty() ) return this;
- // NOTE: I am using a binary pattern to specify all 2^3 combinations below
- _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
- _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
- _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
- _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
- _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
- _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
- _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
- _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
- this.setFromPoints( _points );
- return this;
- }
- translate( offset ) {
- this.min.add( offset );
- this.max.add( offset );
- return this;
- }
- equals( box ) {
- return box.min.equals( this.min ) && box.max.equals( this.max );
- }
- }
- const _points = [
- /*@__PURE__*/ new Vector3(),
- /*@__PURE__*/ new Vector3(),
- /*@__PURE__*/ new Vector3(),
- /*@__PURE__*/ new Vector3(),
- /*@__PURE__*/ new Vector3(),
- /*@__PURE__*/ new Vector3(),
- /*@__PURE__*/ new Vector3(),
- /*@__PURE__*/ new Vector3()
- ];
- const _vector = /*@__PURE__*/ new Vector3();
- const _box = /*@__PURE__*/ new Box3();
- // triangle centered vertices
- const _v0 = /*@__PURE__*/ new Vector3();
- const _v1 = /*@__PURE__*/ new Vector3();
- const _v2 = /*@__PURE__*/ new Vector3();
- // triangle edge vectors
- const _f0 = /*@__PURE__*/ new Vector3();
- const _f1 = /*@__PURE__*/ new Vector3();
- const _f2 = /*@__PURE__*/ new Vector3();
- const _center = /*@__PURE__*/ new Vector3();
- const _extents = /*@__PURE__*/ new Vector3();
- const _triangleNormal = /*@__PURE__*/ new Vector3();
- const _testAxis = /*@__PURE__*/ new Vector3();
- function satForAxes( axes, v0, v1, v2, extents ) {
- for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) {
- _testAxis.fromArray( axes, i );
- // project the aabb onto the separating axis
- const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z );
- // project all 3 vertices of the triangle onto the separating axis
- const p0 = v0.dot( _testAxis );
- const p1 = v1.dot( _testAxis );
- const p2 = v2.dot( _testAxis );
- // actual test, basically see if either of the most extreme of the triangle points intersects r
- if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {
- // points of the projected triangle are outside the projected half-length of the aabb
- // the axis is separating and we can exit
- return false;
- }
- }
- return true;
- }
- export { Box3 };
|