NURBSUtils.js 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. /**
  2. * NURBS utils
  3. *
  4. * See NURBSCurve and NURBSSurface.
  5. **/
  6. /**************************************************************
  7. * NURBS Utils
  8. **************************************************************/
  9. THREE.NURBSUtils = {
  10. /*
  11. Finds knot vector span.
  12. p : degree
  13. u : parametric value
  14. U : knot vector
  15. returns the span
  16. */
  17. findSpan: function ( p, u, U ) {
  18. var n = U.length - p - 1;
  19. if ( u >= U[ n ] ) {
  20. return n - 1;
  21. }
  22. if ( u <= U[ p ] ) {
  23. return p;
  24. }
  25. var low = p;
  26. var high = n;
  27. var mid = Math.floor( ( low + high ) / 2 );
  28. while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
  29. if ( u < U[ mid ] ) {
  30. high = mid;
  31. } else {
  32. low = mid;
  33. }
  34. mid = Math.floor( ( low + high ) / 2 );
  35. }
  36. return mid;
  37. },
  38. /*
  39. Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
  40. span : span in which u lies
  41. u : parametric point
  42. p : degree
  43. U : knot vector
  44. returns array[p+1] with basis functions values.
  45. */
  46. calcBasisFunctions: function ( span, u, p, U ) {
  47. var N = [];
  48. var left = [];
  49. var right = [];
  50. N[ 0 ] = 1.0;
  51. for ( var j = 1; j <= p; ++ j ) {
  52. left[ j ] = u - U[ span + 1 - j ];
  53. right[ j ] = U[ span + j ] - u;
  54. var saved = 0.0;
  55. for ( var r = 0; r < j; ++ r ) {
  56. var rv = right[ r + 1 ];
  57. var lv = left[ j - r ];
  58. var temp = N[ r ] / ( rv + lv );
  59. N[ r ] = saved + rv * temp;
  60. saved = lv * temp;
  61. }
  62. N[ j ] = saved;
  63. }
  64. return N;
  65. },
  66. /*
  67. Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
  68. p : degree of B-Spline
  69. U : knot vector
  70. P : control points (x, y, z, w)
  71. u : parametric point
  72. returns point for given u
  73. */
  74. calcBSplinePoint: function ( p, U, P, u ) {
  75. var span = this.findSpan( p, u, U );
  76. var N = this.calcBasisFunctions( span, u, p, U );
  77. var C = new THREE.Vector4( 0, 0, 0, 0 );
  78. for ( var j = 0; j <= p; ++ j ) {
  79. var point = P[ span - p + j ];
  80. var Nj = N[ j ];
  81. var wNj = point.w * Nj;
  82. C.x += point.x * wNj;
  83. C.y += point.y * wNj;
  84. C.z += point.z * wNj;
  85. C.w += point.w * Nj;
  86. }
  87. return C;
  88. },
  89. /*
  90. Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
  91. span : span in which u lies
  92. u : parametric point
  93. p : degree
  94. n : number of derivatives to calculate
  95. U : knot vector
  96. returns array[n+1][p+1] with basis functions derivatives
  97. */
  98. calcBasisFunctionDerivatives: function ( span, u, p, n, U ) {
  99. var zeroArr = [];
  100. for ( var i = 0; i <= p; ++ i )
  101. zeroArr[ i ] = 0.0;
  102. var ders = [];
  103. for ( var i = 0; i <= n; ++ i )
  104. ders[ i ] = zeroArr.slice( 0 );
  105. var ndu = [];
  106. for ( var i = 0; i <= p; ++ i )
  107. ndu[ i ] = zeroArr.slice( 0 );
  108. ndu[ 0 ][ 0 ] = 1.0;
  109. var left = zeroArr.slice( 0 );
  110. var right = zeroArr.slice( 0 );
  111. for ( var j = 1; j <= p; ++ j ) {
  112. left[ j ] = u - U[ span + 1 - j ];
  113. right[ j ] = U[ span + j ] - u;
  114. var saved = 0.0;
  115. for ( var r = 0; r < j; ++ r ) {
  116. var rv = right[ r + 1 ];
  117. var lv = left[ j - r ];
  118. ndu[ j ][ r ] = rv + lv;
  119. var temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
  120. ndu[ r ][ j ] = saved + rv * temp;
  121. saved = lv * temp;
  122. }
  123. ndu[ j ][ j ] = saved;
  124. }
  125. for ( var j = 0; j <= p; ++ j ) {
  126. ders[ 0 ][ j ] = ndu[ j ][ p ];
  127. }
  128. for ( var r = 0; r <= p; ++ r ) {
  129. var s1 = 0;
  130. var s2 = 1;
  131. var a = [];
  132. for ( var i = 0; i <= p; ++ i ) {
  133. a[ i ] = zeroArr.slice( 0 );
  134. }
  135. a[ 0 ][ 0 ] = 1.0;
  136. for ( var k = 1; k <= n; ++ k ) {
  137. var d = 0.0;
  138. var rk = r - k;
  139. var pk = p - k;
  140. if ( r >= k ) {
  141. a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
  142. d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
  143. }
  144. var j1 = ( rk >= - 1 ) ? 1 : - rk;
  145. var j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
  146. for ( var j = j1; j <= j2; ++ j ) {
  147. a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
  148. d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
  149. }
  150. if ( r <= pk ) {
  151. a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
  152. d += a[ s2 ][ k ] * ndu[ r ][ pk ];
  153. }
  154. ders[ k ][ r ] = d;
  155. var j = s1;
  156. s1 = s2;
  157. s2 = j;
  158. }
  159. }
  160. var r = p;
  161. for ( var k = 1; k <= n; ++ k ) {
  162. for ( var j = 0; j <= p; ++ j ) {
  163. ders[ k ][ j ] *= r;
  164. }
  165. r *= p - k;
  166. }
  167. return ders;
  168. },
  169. /*
  170. Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
  171. p : degree
  172. U : knot vector
  173. P : control points
  174. u : Parametric points
  175. nd : number of derivatives
  176. returns array[d+1] with derivatives
  177. */
  178. calcBSplineDerivatives: function ( p, U, P, u, nd ) {
  179. var du = nd < p ? nd : p;
  180. var CK = [];
  181. var span = this.findSpan( p, u, U );
  182. var nders = this.calcBasisFunctionDerivatives( span, u, p, du, U );
  183. var Pw = [];
  184. for ( var i = 0; i < P.length; ++ i ) {
  185. var point = P[ i ].clone();
  186. var w = point.w;
  187. point.x *= w;
  188. point.y *= w;
  189. point.z *= w;
  190. Pw[ i ] = point;
  191. }
  192. for ( var k = 0; k <= du; ++ k ) {
  193. var point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
  194. for ( var j = 1; j <= p; ++ j ) {
  195. point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
  196. }
  197. CK[ k ] = point;
  198. }
  199. for ( var k = du + 1; k <= nd + 1; ++ k ) {
  200. CK[ k ] = new THREE.Vector4( 0, 0, 0 );
  201. }
  202. return CK;
  203. },
  204. /*
  205. Calculate "K over I"
  206. returns k!/(i!(k-i)!)
  207. */
  208. calcKoverI: function ( k, i ) {
  209. var nom = 1;
  210. for ( var j = 2; j <= k; ++ j ) {
  211. nom *= j;
  212. }
  213. var denom = 1;
  214. for ( var j = 2; j <= i; ++ j ) {
  215. denom *= j;
  216. }
  217. for ( var j = 2; j <= k - i; ++ j ) {
  218. denom *= j;
  219. }
  220. return nom / denom;
  221. },
  222. /*
  223. Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
  224. Pders : result of function calcBSplineDerivatives
  225. returns array with derivatives for rational curve.
  226. */
  227. calcRationalCurveDerivatives: function ( Pders ) {
  228. var nd = Pders.length;
  229. var Aders = [];
  230. var wders = [];
  231. for ( var i = 0; i < nd; ++ i ) {
  232. var point = Pders[ i ];
  233. Aders[ i ] = new THREE.Vector3( point.x, point.y, point.z );
  234. wders[ i ] = point.w;
  235. }
  236. var CK = [];
  237. for ( var k = 0; k < nd; ++ k ) {
  238. var v = Aders[ k ].clone();
  239. for ( var i = 1; i <= k; ++ i ) {
  240. v.sub( CK[ k - i ].clone().multiplyScalar( this.calcKoverI( k, i ) * wders[ i ] ) );
  241. }
  242. CK[ k ] = v.divideScalar( wders[ 0 ] );
  243. }
  244. return CK;
  245. },
  246. /*
  247. Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
  248. p : degree
  249. U : knot vector
  250. P : control points in homogeneous space
  251. u : parametric points
  252. nd : number of derivatives
  253. returns array with derivatives.
  254. */
  255. calcNURBSDerivatives: function ( p, U, P, u, nd ) {
  256. var Pders = this.calcBSplineDerivatives( p, U, P, u, nd );
  257. return this.calcRationalCurveDerivatives( Pders );
  258. },
  259. /*
  260. Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
  261. p1, p2 : degrees of B-Spline surface
  262. U1, U2 : knot vectors
  263. P : control points (x, y, z, w)
  264. u, v : parametric values
  265. returns point for given (u, v)
  266. */
  267. calcSurfacePoint: function ( p, q, U, V, P, u, v, target ) {
  268. var uspan = this.findSpan( p, u, U );
  269. var vspan = this.findSpan( q, v, V );
  270. var Nu = this.calcBasisFunctions( uspan, u, p, U );
  271. var Nv = this.calcBasisFunctions( vspan, v, q, V );
  272. var temp = [];
  273. for ( var l = 0; l <= q; ++ l ) {
  274. temp[ l ] = new THREE.Vector4( 0, 0, 0, 0 );
  275. for ( var k = 0; k <= p; ++ k ) {
  276. var point = P[ uspan - p + k ][ vspan - q + l ].clone();
  277. var w = point.w;
  278. point.x *= w;
  279. point.y *= w;
  280. point.z *= w;
  281. temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
  282. }
  283. }
  284. var Sw = new THREE.Vector4( 0, 0, 0, 0 );
  285. for ( var l = 0; l <= q; ++ l ) {
  286. Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
  287. }
  288. Sw.divideScalar( Sw.w );
  289. target.set( Sw.x, Sw.y, Sw.z );
  290. }
  291. };