DecalGeometry.js 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. /**
  2. * You can use this geometry to create a decal mesh, that serves different kinds of purposes.
  3. * e.g. adding unique details to models, performing dynamic visual environmental changes or covering seams.
  4. *
  5. * Constructor parameter:
  6. *
  7. * mesh — Any mesh object
  8. * position — Position of the decal projector
  9. * orientation — Orientation of the decal projector
  10. * size — Size of the decal projector
  11. *
  12. * reference: http://blog.wolfire.com/2009/06/how-to-project-decals/
  13. *
  14. */
  15. THREE.DecalGeometry = function ( mesh, position, orientation, size ) {
  16. THREE.BufferGeometry.call( this );
  17. // buffers
  18. var vertices = [];
  19. var normals = [];
  20. var uvs = [];
  21. // helpers
  22. var plane = new THREE.Vector3();
  23. // this matrix represents the transformation of the decal projector
  24. var projectorMatrix = new THREE.Matrix4();
  25. projectorMatrix.makeRotationFromEuler( orientation );
  26. projectorMatrix.setPosition( position );
  27. var projectorMatrixInverse = new THREE.Matrix4();
  28. projectorMatrixInverse.copy( projectorMatrix ).invert();
  29. // generate buffers
  30. generate();
  31. // build geometry
  32. this.setAttribute( 'position', new THREE.Float32BufferAttribute( vertices, 3 ) );
  33. this.setAttribute( 'normal', new THREE.Float32BufferAttribute( normals, 3 ) );
  34. this.setAttribute( 'uv', new THREE.Float32BufferAttribute( uvs, 2 ) );
  35. function generate() {
  36. var i;
  37. var decalVertices = [];
  38. var vertex = new THREE.Vector3();
  39. var normal = new THREE.Vector3();
  40. // handle different geometry types
  41. if ( mesh.geometry.isGeometry === true ) {
  42. console.error( 'THREE.DecalGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );
  43. return;
  44. }
  45. var geometry = mesh.geometry;
  46. var positionAttribute = geometry.attributes.position;
  47. var normalAttribute = geometry.attributes.normal;
  48. // first, create an array of 'DecalVertex' objects
  49. // three consecutive 'DecalVertex' objects represent a single face
  50. //
  51. // this data structure will be later used to perform the clipping
  52. if ( geometry.index !== null ) {
  53. // indexed BufferGeometry
  54. var index = geometry.index;
  55. for ( i = 0; i < index.count; i ++ ) {
  56. vertex.fromBufferAttribute( positionAttribute, index.getX( i ) );
  57. normal.fromBufferAttribute( normalAttribute, index.getX( i ) );
  58. pushDecalVertex( decalVertices, vertex, normal );
  59. }
  60. } else {
  61. // non-indexed BufferGeometry
  62. for ( i = 0; i < positionAttribute.count; i ++ ) {
  63. vertex.fromBufferAttribute( positionAttribute, i );
  64. normal.fromBufferAttribute( normalAttribute, i );
  65. pushDecalVertex( decalVertices, vertex, normal );
  66. }
  67. }
  68. // second, clip the geometry so that it doesn't extend out from the projector
  69. decalVertices = clipGeometry( decalVertices, plane.set( 1, 0, 0 ) );
  70. decalVertices = clipGeometry( decalVertices, plane.set( - 1, 0, 0 ) );
  71. decalVertices = clipGeometry( decalVertices, plane.set( 0, 1, 0 ) );
  72. decalVertices = clipGeometry( decalVertices, plane.set( 0, - 1, 0 ) );
  73. decalVertices = clipGeometry( decalVertices, plane.set( 0, 0, 1 ) );
  74. decalVertices = clipGeometry( decalVertices, plane.set( 0, 0, - 1 ) );
  75. // third, generate final vertices, normals and uvs
  76. for ( i = 0; i < decalVertices.length; i ++ ) {
  77. var decalVertex = decalVertices[ i ];
  78. // create texture coordinates (we are still in projector space)
  79. uvs.push(
  80. 0.5 + ( decalVertex.position.x / size.x ),
  81. 0.5 + ( decalVertex.position.y / size.y )
  82. );
  83. // transform the vertex back to world space
  84. decalVertex.position.applyMatrix4( projectorMatrix );
  85. // now create vertex and normal buffer data
  86. vertices.push( decalVertex.position.x, decalVertex.position.y, decalVertex.position.z );
  87. normals.push( decalVertex.normal.x, decalVertex.normal.y, decalVertex.normal.z );
  88. }
  89. }
  90. function pushDecalVertex( decalVertices, vertex, normal ) {
  91. // transform the vertex to world space, then to projector space
  92. vertex.applyMatrix4( mesh.matrixWorld );
  93. vertex.applyMatrix4( projectorMatrixInverse );
  94. normal.transformDirection( mesh.matrixWorld );
  95. decalVertices.push( new THREE.DecalVertex( vertex.clone(), normal.clone() ) );
  96. }
  97. function clipGeometry( inVertices, plane ) {
  98. var outVertices = [];
  99. var s = 0.5 * Math.abs( size.dot( plane ) );
  100. // a single iteration clips one face,
  101. // which consists of three consecutive 'DecalVertex' objects
  102. for ( var i = 0; i < inVertices.length; i += 3 ) {
  103. var v1Out, v2Out, v3Out, total = 0;
  104. var nV1, nV2, nV3, nV4;
  105. var d1 = inVertices[ i + 0 ].position.dot( plane ) - s;
  106. var d2 = inVertices[ i + 1 ].position.dot( plane ) - s;
  107. var d3 = inVertices[ i + 2 ].position.dot( plane ) - s;
  108. v1Out = d1 > 0;
  109. v2Out = d2 > 0;
  110. v3Out = d3 > 0;
  111. // calculate, how many vertices of the face lie outside of the clipping plane
  112. total = ( v1Out ? 1 : 0 ) + ( v2Out ? 1 : 0 ) + ( v3Out ? 1 : 0 );
  113. switch ( total ) {
  114. case 0: {
  115. // the entire face lies inside of the plane, no clipping needed
  116. outVertices.push( inVertices[ i ] );
  117. outVertices.push( inVertices[ i + 1 ] );
  118. outVertices.push( inVertices[ i + 2 ] );
  119. break;
  120. }
  121. case 1: {
  122. // one vertex lies outside of the plane, perform clipping
  123. if ( v1Out ) {
  124. nV1 = inVertices[ i + 1 ];
  125. nV2 = inVertices[ i + 2 ];
  126. nV3 = clip( inVertices[ i ], nV1, plane, s );
  127. nV4 = clip( inVertices[ i ], nV2, plane, s );
  128. }
  129. if ( v2Out ) {
  130. nV1 = inVertices[ i ];
  131. nV2 = inVertices[ i + 2 ];
  132. nV3 = clip( inVertices[ i + 1 ], nV1, plane, s );
  133. nV4 = clip( inVertices[ i + 1 ], nV2, plane, s );
  134. outVertices.push( nV3 );
  135. outVertices.push( nV2.clone() );
  136. outVertices.push( nV1.clone() );
  137. outVertices.push( nV2.clone() );
  138. outVertices.push( nV3.clone() );
  139. outVertices.push( nV4 );
  140. break;
  141. }
  142. if ( v3Out ) {
  143. nV1 = inVertices[ i ];
  144. nV2 = inVertices[ i + 1 ];
  145. nV3 = clip( inVertices[ i + 2 ], nV1, plane, s );
  146. nV4 = clip( inVertices[ i + 2 ], nV2, plane, s );
  147. }
  148. outVertices.push( nV1.clone() );
  149. outVertices.push( nV2.clone() );
  150. outVertices.push( nV3 );
  151. outVertices.push( nV4 );
  152. outVertices.push( nV3.clone() );
  153. outVertices.push( nV2.clone() );
  154. break;
  155. }
  156. case 2: {
  157. // two vertices lies outside of the plane, perform clipping
  158. if ( ! v1Out ) {
  159. nV1 = inVertices[ i ].clone();
  160. nV2 = clip( nV1, inVertices[ i + 1 ], plane, s );
  161. nV3 = clip( nV1, inVertices[ i + 2 ], plane, s );
  162. outVertices.push( nV1 );
  163. outVertices.push( nV2 );
  164. outVertices.push( nV3 );
  165. }
  166. if ( ! v2Out ) {
  167. nV1 = inVertices[ i + 1 ].clone();
  168. nV2 = clip( nV1, inVertices[ i + 2 ], plane, s );
  169. nV3 = clip( nV1, inVertices[ i ], plane, s );
  170. outVertices.push( nV1 );
  171. outVertices.push( nV2 );
  172. outVertices.push( nV3 );
  173. }
  174. if ( ! v3Out ) {
  175. nV1 = inVertices[ i + 2 ].clone();
  176. nV2 = clip( nV1, inVertices[ i ], plane, s );
  177. nV3 = clip( nV1, inVertices[ i + 1 ], plane, s );
  178. outVertices.push( nV1 );
  179. outVertices.push( nV2 );
  180. outVertices.push( nV3 );
  181. }
  182. break;
  183. }
  184. case 3: {
  185. // the entire face lies outside of the plane, so let's discard the corresponding vertices
  186. break;
  187. }
  188. }
  189. }
  190. return outVertices;
  191. }
  192. function clip( v0, v1, p, s ) {
  193. var d0 = v0.position.dot( p ) - s;
  194. var d1 = v1.position.dot( p ) - s;
  195. var s0 = d0 / ( d0 - d1 );
  196. var v = new THREE.DecalVertex(
  197. new THREE.Vector3(
  198. v0.position.x + s0 * ( v1.position.x - v0.position.x ),
  199. v0.position.y + s0 * ( v1.position.y - v0.position.y ),
  200. v0.position.z + s0 * ( v1.position.z - v0.position.z )
  201. ),
  202. new THREE.Vector3(
  203. v0.normal.x + s0 * ( v1.normal.x - v0.normal.x ),
  204. v0.normal.y + s0 * ( v1.normal.y - v0.normal.y ),
  205. v0.normal.z + s0 * ( v1.normal.z - v0.normal.z )
  206. )
  207. );
  208. // need to clip more values (texture coordinates)? do it this way:
  209. // intersectpoint.value = a.value + s * ( b.value - a.value );
  210. return v;
  211. }
  212. };
  213. THREE.DecalGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
  214. THREE.DecalGeometry.prototype.constructor = THREE.DecalGeometry;
  215. // helper
  216. THREE.DecalVertex = function ( position, normal ) {
  217. this.position = position;
  218. this.normal = normal;
  219. };
  220. THREE.DecalVertex.prototype.clone = function () {
  221. return new this.constructor( this.position.clone(), this.normal.clone() );
  222. };