2
0

GPUComputationRenderer.js 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. /**
  2. * GPUComputationRenderer, based on SimulationRenderer by zz85
  3. *
  4. * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
  5. * for each compute element (texel)
  6. *
  7. * Each variable has a fragment shader that defines the computation made to obtain the variable in question.
  8. * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
  9. * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
  10. *
  11. * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
  12. * as inputs to render the textures of the next frame.
  13. *
  14. * The render targets of the variables can be used as input textures for your visualization shaders.
  15. *
  16. * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
  17. * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
  18. *
  19. * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
  20. * #DEFINE resolution vec2( 1024.0, 1024.0 )
  21. *
  22. * -------------
  23. *
  24. * Basic use:
  25. *
  26. * // Initialization...
  27. *
  28. * // Create computation renderer
  29. * var gpuCompute = new THREE.GPUComputationRenderer( 1024, 1024, renderer );
  30. *
  31. * // Create initial state float textures
  32. * var pos0 = gpuCompute.createTexture();
  33. * var vel0 = gpuCompute.createTexture();
  34. * // and fill in here the texture data...
  35. *
  36. * // Add texture variables
  37. * var velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
  38. * var posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
  39. *
  40. * // Add variable dependencies
  41. * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
  42. * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
  43. *
  44. * // Add custom uniforms
  45. * velVar.material.uniforms.time = { value: 0.0 };
  46. *
  47. * // Check for completeness
  48. * var error = gpuCompute.init();
  49. * if ( error !== null ) {
  50. * console.error( error );
  51. * }
  52. *
  53. *
  54. * // In each frame...
  55. *
  56. * // Compute!
  57. * gpuCompute.compute();
  58. *
  59. * // Update texture uniforms in your visualization materials with the gpu renderer output
  60. * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
  61. *
  62. * // Do your rendering
  63. * renderer.render( myScene, myCamera );
  64. *
  65. * -------------
  66. *
  67. * Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)
  68. * Note that the shaders can have multiple input textures.
  69. *
  70. * var myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
  71. * var myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
  72. *
  73. * var inputTexture = gpuCompute.createTexture();
  74. *
  75. * // Fill in here inputTexture...
  76. *
  77. * myFilter1.uniforms.theTexture.value = inputTexture;
  78. *
  79. * var myRenderTarget = gpuCompute.createRenderTarget();
  80. * myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
  81. *
  82. * var outputRenderTarget = gpuCompute.createRenderTarget();
  83. *
  84. * // Now use the output texture where you want:
  85. * myMaterial.uniforms.map.value = outputRenderTarget.texture;
  86. *
  87. * // And compute each frame, before rendering to screen:
  88. * gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
  89. * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
  90. *
  91. *
  92. *
  93. * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
  94. * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
  95. * @param {WebGLRenderer} renderer The renderer
  96. */
  97. THREE.GPUComputationRenderer = function ( sizeX, sizeY, renderer ) {
  98. this.variables = [];
  99. this.currentTextureIndex = 0;
  100. var dataType = THREE.FloatType;
  101. var scene = new THREE.Scene();
  102. var camera = new THREE.Camera();
  103. camera.position.z = 1;
  104. var passThruUniforms = {
  105. passThruTexture: { value: null }
  106. };
  107. var passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
  108. var mesh = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), passThruShader );
  109. scene.add( mesh );
  110. this.setDataType = function ( type ) {
  111. dataType = type;
  112. return this;
  113. };
  114. this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {
  115. var material = this.createShaderMaterial( computeFragmentShader );
  116. var variable = {
  117. name: variableName,
  118. initialValueTexture: initialValueTexture,
  119. material: material,
  120. dependencies: null,
  121. renderTargets: [],
  122. wrapS: null,
  123. wrapT: null,
  124. minFilter: THREE.NearestFilter,
  125. magFilter: THREE.NearestFilter
  126. };
  127. this.variables.push( variable );
  128. return variable;
  129. };
  130. this.setVariableDependencies = function ( variable, dependencies ) {
  131. variable.dependencies = dependencies;
  132. };
  133. this.init = function () {
  134. if ( renderer.capabilities.isWebGL2 === false && renderer.extensions.has( 'OES_texture_float' ) === false ) {
  135. return 'No OES_texture_float support for float textures.';
  136. }
  137. if ( renderer.capabilities.maxVertexTextures === 0 ) {
  138. return 'No support for vertex shader textures.';
  139. }
  140. for ( var i = 0; i < this.variables.length; i ++ ) {
  141. var variable = this.variables[ i ];
  142. // Creates rendertargets and initialize them with input texture
  143. variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
  144. variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
  145. this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
  146. this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );
  147. // Adds dependencies uniforms to the ShaderMaterial
  148. var material = variable.material;
  149. var uniforms = material.uniforms;
  150. if ( variable.dependencies !== null ) {
  151. for ( var d = 0; d < variable.dependencies.length; d ++ ) {
  152. var depVar = variable.dependencies[ d ];
  153. if ( depVar.name !== variable.name ) {
  154. // Checks if variable exists
  155. var found = false;
  156. for ( var j = 0; j < this.variables.length; j ++ ) {
  157. if ( depVar.name === this.variables[ j ].name ) {
  158. found = true;
  159. break;
  160. }
  161. }
  162. if ( ! found ) {
  163. return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;
  164. }
  165. }
  166. uniforms[ depVar.name ] = { value: null };
  167. material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;
  168. }
  169. }
  170. }
  171. this.currentTextureIndex = 0;
  172. return null;
  173. };
  174. this.compute = function () {
  175. var currentTextureIndex = this.currentTextureIndex;
  176. var nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
  177. for ( var i = 0, il = this.variables.length; i < il; i ++ ) {
  178. var variable = this.variables[ i ];
  179. // Sets texture dependencies uniforms
  180. if ( variable.dependencies !== null ) {
  181. var uniforms = variable.material.uniforms;
  182. for ( var d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {
  183. var depVar = variable.dependencies[ d ];
  184. uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
  185. }
  186. }
  187. // Performs the computation for this variable
  188. this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
  189. }
  190. this.currentTextureIndex = nextTextureIndex;
  191. };
  192. this.getCurrentRenderTarget = function ( variable ) {
  193. return variable.renderTargets[ this.currentTextureIndex ];
  194. };
  195. this.getAlternateRenderTarget = function ( variable ) {
  196. return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
  197. };
  198. function addResolutionDefine( materialShader ) {
  199. materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';
  200. }
  201. this.addResolutionDefine = addResolutionDefine;
  202. // The following functions can be used to compute things manually
  203. function createShaderMaterial( computeFragmentShader, uniforms ) {
  204. uniforms = uniforms || {};
  205. var material = new THREE.ShaderMaterial( {
  206. uniforms: uniforms,
  207. vertexShader: getPassThroughVertexShader(),
  208. fragmentShader: computeFragmentShader
  209. } );
  210. addResolutionDefine( material );
  211. return material;
  212. }
  213. this.createShaderMaterial = createShaderMaterial;
  214. this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
  215. sizeXTexture = sizeXTexture || sizeX;
  216. sizeYTexture = sizeYTexture || sizeY;
  217. wrapS = wrapS || THREE.ClampToEdgeWrapping;
  218. wrapT = wrapT || THREE.ClampToEdgeWrapping;
  219. minFilter = minFilter || THREE.NearestFilter;
  220. magFilter = magFilter || THREE.NearestFilter;
  221. var renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {
  222. wrapS: wrapS,
  223. wrapT: wrapT,
  224. minFilter: minFilter,
  225. magFilter: magFilter,
  226. format: THREE.RGBAFormat,
  227. type: dataType,
  228. depthBuffer: false
  229. } );
  230. return renderTarget;
  231. };
  232. this.createTexture = function () {
  233. var data = new Float32Array( sizeX * sizeY * 4 );
  234. return new THREE.DataTexture( data, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );
  235. };
  236. this.renderTexture = function ( input, output ) {
  237. // Takes a texture, and render out in rendertarget
  238. // input = Texture
  239. // output = RenderTarget
  240. passThruUniforms.passThruTexture.value = input;
  241. this.doRenderTarget( passThruShader, output );
  242. passThruUniforms.passThruTexture.value = null;
  243. };
  244. this.doRenderTarget = function ( material, output ) {
  245. var currentRenderTarget = renderer.getRenderTarget();
  246. mesh.material = material;
  247. renderer.setRenderTarget( output );
  248. renderer.render( scene, camera );
  249. mesh.material = passThruShader;
  250. renderer.setRenderTarget( currentRenderTarget );
  251. };
  252. // Shaders
  253. function getPassThroughVertexShader() {
  254. return 'void main() {\n' +
  255. '\n' +
  256. ' gl_Position = vec4( position, 1.0 );\n' +
  257. '\n' +
  258. '}\n';
  259. }
  260. function getPassThroughFragmentShader() {
  261. return 'uniform sampler2D passThruTexture;\n' +
  262. '\n' +
  263. 'void main() {\n' +
  264. '\n' +
  265. ' vec2 uv = gl_FragCoord.xy / resolution.xy;\n' +
  266. '\n' +
  267. ' gl_FragColor = texture2D( passThruTexture, uv );\n' +
  268. '\n' +
  269. '}\n';
  270. }
  271. };