123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- THREE.GeometryUtils = {
- /**
- * Generates 2D-Coordinates in a very fast way.
- *
- * Based on work by:
- * @link http://www.openprocessing.org/sketch/15493
- *
- * @param center Center of Hilbert curve.
- * @param size Total width of Hilbert curve.
- * @param iterations Number of subdivisions.
- * @param v0 Corner index -X, -Z.
- * @param v1 Corner index -X, +Z.
- * @param v2 Corner index +X, +Z.
- * @param v3 Corner index +X, -Z.
- */
- hilbert2D: function ( center, size, iterations, v0, v1, v2, v3 ) {
- // Default Vars
- var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
- size = size !== undefined ? size : 10,
- half = size / 2,
- iterations = iterations !== undefined ? iterations : 1,
- v0 = v0 !== undefined ? v0 : 0,
- v1 = v1 !== undefined ? v1 : 1,
- v2 = v2 !== undefined ? v2 : 2,
- v3 = v3 !== undefined ? v3 : 3
- ;
- var vec_s = [
- new THREE.Vector3( center.x - half, center.y, center.z - half ),
- new THREE.Vector3( center.x - half, center.y, center.z + half ),
- new THREE.Vector3( center.x + half, center.y, center.z + half ),
- new THREE.Vector3( center.x + half, center.y, center.z - half )
- ];
- var vec = [
- vec_s[ v0 ],
- vec_s[ v1 ],
- vec_s[ v2 ],
- vec_s[ v3 ]
- ];
- // Recurse iterations
- if ( 0 <= -- iterations ) {
- var tmp = [];
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) );
- // Return recursive call
- return tmp;
- }
- // Return complete Hilbert Curve.
- return vec;
- },
- /**
- * Generates 3D-Coordinates in a very fast way.
- *
- * Based on work by:
- * @link http://www.openprocessing.org/visuals/?visualID=15599
- *
- * @param center Center of Hilbert curve.
- * @param size Total width of Hilbert curve.
- * @param iterations Number of subdivisions.
- * @param v0 Corner index -X, +Y, -Z.
- * @param v1 Corner index -X, +Y, +Z.
- * @param v2 Corner index -X, -Y, +Z.
- * @param v3 Corner index -X, -Y, -Z.
- * @param v4 Corner index +X, -Y, -Z.
- * @param v5 Corner index +X, -Y, +Z.
- * @param v6 Corner index +X, +Y, +Z.
- * @param v7 Corner index +X, +Y, -Z.
- */
- hilbert3D: function ( center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7 ) {
- // Default Vars
- var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
- size = size !== undefined ? size : 10,
- half = size / 2,
- iterations = iterations !== undefined ? iterations : 1,
- v0 = v0 !== undefined ? v0 : 0,
- v1 = v1 !== undefined ? v1 : 1,
- v2 = v2 !== undefined ? v2 : 2,
- v3 = v3 !== undefined ? v3 : 3,
- v4 = v4 !== undefined ? v4 : 4,
- v5 = v5 !== undefined ? v5 : 5,
- v6 = v6 !== undefined ? v6 : 6,
- v7 = v7 !== undefined ? v7 : 7
- ;
- var vec_s = [
- new THREE.Vector3( center.x - half, center.y + half, center.z - half ),
- new THREE.Vector3( center.x - half, center.y + half, center.z + half ),
- new THREE.Vector3( center.x - half, center.y - half, center.z + half ),
- new THREE.Vector3( center.x - half, center.y - half, center.z - half ),
- new THREE.Vector3( center.x + half, center.y - half, center.z - half ),
- new THREE.Vector3( center.x + half, center.y - half, center.z + half ),
- new THREE.Vector3( center.x + half, center.y + half, center.z + half ),
- new THREE.Vector3( center.x + half, center.y + half, center.z - half )
- ];
- var vec = [
- vec_s[ v0 ],
- vec_s[ v1 ],
- vec_s[ v2 ],
- vec_s[ v3 ],
- vec_s[ v4 ],
- vec_s[ v5 ],
- vec_s[ v6 ],
- vec_s[ v7 ]
- ];
- // Recurse iterations
- if ( -- iterations >= 0 ) {
- var tmp = [];
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
- Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );
- // Return recursive call
- return tmp;
- }
- // Return complete Hilbert Curve.
- return vec;
- },
- /**
- * Generates a Gosper curve (lying in the XY plane)
- *
- * https://gist.github.com/nitaku/6521802
- *
- * @param size The size of a single gosper island.
- */
- gosper: function ( size ) {
- size = ( size !== undefined ) ? size : 1;
- function fractalize( config ) {
- var output;
- var input = config.axiom;
- for ( var i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
- output = '';
- for ( var j = 0, jl = input.length; j < jl; j ++ ) {
- var char = input[ j ];
- if ( char in config.rules ) {
- output += config.rules[ char ];
- } else {
- output += char;
- }
- }
- input = output;
- }
- return output;
- }
- function toPoints( config ) {
- var currX = 0, currY = 0;
- var angle = 0;
- var path = [ 0, 0, 0 ];
- var fractal = config.fractal;
- for ( var i = 0, l = fractal.length; i < l; i ++ ) {
- var char = fractal[ i ];
- if ( char === '+' ) {
- angle += config.angle;
- } else if ( char === '-' ) {
- angle -= config.angle;
- } else if ( char === 'F' ) {
- currX += config.size * Math.cos( angle );
- currY += - config.size * Math.sin( angle );
- path.push( currX, currY, 0 );
- }
- }
- return path;
- }
- //
- var gosper = fractalize( {
- axiom: 'A',
- steps: 4,
- rules: {
- A: 'A+BF++BF-FA--FAFA-BF+',
- B: '-FA+BFBF++BF+FA--FA-B'
- }
- } );
- var points = toPoints( {
- fractal: gosper,
- size: size,
- angle: Math.PI / 3 // 60 degrees
- } );
- return points;
- }
- };
|