2
0

GeometryUtils.js 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. THREE.GeometryUtils = {
  2. /**
  3. * Generates 2D-Coordinates in a very fast way.
  4. *
  5. * Based on work by:
  6. * @link http://www.openprocessing.org/sketch/15493
  7. *
  8. * @param center Center of Hilbert curve.
  9. * @param size Total width of Hilbert curve.
  10. * @param iterations Number of subdivisions.
  11. * @param v0 Corner index -X, -Z.
  12. * @param v1 Corner index -X, +Z.
  13. * @param v2 Corner index +X, +Z.
  14. * @param v3 Corner index +X, -Z.
  15. */
  16. hilbert2D: function ( center, size, iterations, v0, v1, v2, v3 ) {
  17. // Default Vars
  18. var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
  19. size = size !== undefined ? size : 10,
  20. half = size / 2,
  21. iterations = iterations !== undefined ? iterations : 1,
  22. v0 = v0 !== undefined ? v0 : 0,
  23. v1 = v1 !== undefined ? v1 : 1,
  24. v2 = v2 !== undefined ? v2 : 2,
  25. v3 = v3 !== undefined ? v3 : 3
  26. ;
  27. var vec_s = [
  28. new THREE.Vector3( center.x - half, center.y, center.z - half ),
  29. new THREE.Vector3( center.x - half, center.y, center.z + half ),
  30. new THREE.Vector3( center.x + half, center.y, center.z + half ),
  31. new THREE.Vector3( center.x + half, center.y, center.z - half )
  32. ];
  33. var vec = [
  34. vec_s[ v0 ],
  35. vec_s[ v1 ],
  36. vec_s[ v2 ],
  37. vec_s[ v3 ]
  38. ];
  39. // Recurse iterations
  40. if ( 0 <= -- iterations ) {
  41. var tmp = [];
  42. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );
  43. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );
  44. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );
  45. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) );
  46. // Return recursive call
  47. return tmp;
  48. }
  49. // Return complete Hilbert Curve.
  50. return vec;
  51. },
  52. /**
  53. * Generates 3D-Coordinates in a very fast way.
  54. *
  55. * Based on work by:
  56. * @link http://www.openprocessing.org/visuals/?visualID=15599
  57. *
  58. * @param center Center of Hilbert curve.
  59. * @param size Total width of Hilbert curve.
  60. * @param iterations Number of subdivisions.
  61. * @param v0 Corner index -X, +Y, -Z.
  62. * @param v1 Corner index -X, +Y, +Z.
  63. * @param v2 Corner index -X, -Y, +Z.
  64. * @param v3 Corner index -X, -Y, -Z.
  65. * @param v4 Corner index +X, -Y, -Z.
  66. * @param v5 Corner index +X, -Y, +Z.
  67. * @param v6 Corner index +X, +Y, +Z.
  68. * @param v7 Corner index +X, +Y, -Z.
  69. */
  70. hilbert3D: function ( center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7 ) {
  71. // Default Vars
  72. var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
  73. size = size !== undefined ? size : 10,
  74. half = size / 2,
  75. iterations = iterations !== undefined ? iterations : 1,
  76. v0 = v0 !== undefined ? v0 : 0,
  77. v1 = v1 !== undefined ? v1 : 1,
  78. v2 = v2 !== undefined ? v2 : 2,
  79. v3 = v3 !== undefined ? v3 : 3,
  80. v4 = v4 !== undefined ? v4 : 4,
  81. v5 = v5 !== undefined ? v5 : 5,
  82. v6 = v6 !== undefined ? v6 : 6,
  83. v7 = v7 !== undefined ? v7 : 7
  84. ;
  85. var vec_s = [
  86. new THREE.Vector3( center.x - half, center.y + half, center.z - half ),
  87. new THREE.Vector3( center.x - half, center.y + half, center.z + half ),
  88. new THREE.Vector3( center.x - half, center.y - half, center.z + half ),
  89. new THREE.Vector3( center.x - half, center.y - half, center.z - half ),
  90. new THREE.Vector3( center.x + half, center.y - half, center.z - half ),
  91. new THREE.Vector3( center.x + half, center.y - half, center.z + half ),
  92. new THREE.Vector3( center.x + half, center.y + half, center.z + half ),
  93. new THREE.Vector3( center.x + half, center.y + half, center.z - half )
  94. ];
  95. var vec = [
  96. vec_s[ v0 ],
  97. vec_s[ v1 ],
  98. vec_s[ v2 ],
  99. vec_s[ v3 ],
  100. vec_s[ v4 ],
  101. vec_s[ v5 ],
  102. vec_s[ v6 ],
  103. vec_s[ v7 ]
  104. ];
  105. // Recurse iterations
  106. if ( -- iterations >= 0 ) {
  107. var tmp = [];
  108. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
  109. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
  110. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
  111. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
  112. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
  113. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
  114. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
  115. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );
  116. // Return recursive call
  117. return tmp;
  118. }
  119. // Return complete Hilbert Curve.
  120. return vec;
  121. },
  122. /**
  123. * Generates a Gosper curve (lying in the XY plane)
  124. *
  125. * https://gist.github.com/nitaku/6521802
  126. *
  127. * @param size The size of a single gosper island.
  128. */
  129. gosper: function ( size ) {
  130. size = ( size !== undefined ) ? size : 1;
  131. function fractalize( config ) {
  132. var output;
  133. var input = config.axiom;
  134. for ( var i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
  135. output = '';
  136. for ( var j = 0, jl = input.length; j < jl; j ++ ) {
  137. var char = input[ j ];
  138. if ( char in config.rules ) {
  139. output += config.rules[ char ];
  140. } else {
  141. output += char;
  142. }
  143. }
  144. input = output;
  145. }
  146. return output;
  147. }
  148. function toPoints( config ) {
  149. var currX = 0, currY = 0;
  150. var angle = 0;
  151. var path = [ 0, 0, 0 ];
  152. var fractal = config.fractal;
  153. for ( var i = 0, l = fractal.length; i < l; i ++ ) {
  154. var char = fractal[ i ];
  155. if ( char === '+' ) {
  156. angle += config.angle;
  157. } else if ( char === '-' ) {
  158. angle -= config.angle;
  159. } else if ( char === 'F' ) {
  160. currX += config.size * Math.cos( angle );
  161. currY += - config.size * Math.sin( angle );
  162. path.push( currX, currY, 0 );
  163. }
  164. }
  165. return path;
  166. }
  167. //
  168. var gosper = fractalize( {
  169. axiom: 'A',
  170. steps: 4,
  171. rules: {
  172. A: 'A+BF++BF-FA--FAFA-BF+',
  173. B: '-FA+BFBF++BF+FA--FA-B'
  174. }
  175. } );
  176. var points = toPoints( {
  177. fractal: gosper,
  178. size: size,
  179. angle: Math.PI / 3 // 60 degrees
  180. } );
  181. return points;
  182. }
  183. };