NURBSUtils.js 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. import {
  2. Vector3,
  3. Vector4
  4. } from '../../../build/three.module.js';
  5. /**
  6. * NURBS utils
  7. *
  8. * See NURBSCurve and NURBSSurface.
  9. **/
  10. /**************************************************************
  11. * NURBS Utils
  12. **************************************************************/
  13. var NURBSUtils = {
  14. /*
  15. Finds knot vector span.
  16. p : degree
  17. u : parametric value
  18. U : knot vector
  19. returns the span
  20. */
  21. findSpan: function ( p, u, U ) {
  22. var n = U.length - p - 1;
  23. if ( u >= U[ n ] ) {
  24. return n - 1;
  25. }
  26. if ( u <= U[ p ] ) {
  27. return p;
  28. }
  29. var low = p;
  30. var high = n;
  31. var mid = Math.floor( ( low + high ) / 2 );
  32. while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
  33. if ( u < U[ mid ] ) {
  34. high = mid;
  35. } else {
  36. low = mid;
  37. }
  38. mid = Math.floor( ( low + high ) / 2 );
  39. }
  40. return mid;
  41. },
  42. /*
  43. Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
  44. span : span in which u lies
  45. u : parametric point
  46. p : degree
  47. U : knot vector
  48. returns array[p+1] with basis functions values.
  49. */
  50. calcBasisFunctions: function ( span, u, p, U ) {
  51. var N = [];
  52. var left = [];
  53. var right = [];
  54. N[ 0 ] = 1.0;
  55. for ( var j = 1; j <= p; ++ j ) {
  56. left[ j ] = u - U[ span + 1 - j ];
  57. right[ j ] = U[ span + j ] - u;
  58. var saved = 0.0;
  59. for ( var r = 0; r < j; ++ r ) {
  60. var rv = right[ r + 1 ];
  61. var lv = left[ j - r ];
  62. var temp = N[ r ] / ( rv + lv );
  63. N[ r ] = saved + rv * temp;
  64. saved = lv * temp;
  65. }
  66. N[ j ] = saved;
  67. }
  68. return N;
  69. },
  70. /*
  71. Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
  72. p : degree of B-Spline
  73. U : knot vector
  74. P : control points (x, y, z, w)
  75. u : parametric point
  76. returns point for given u
  77. */
  78. calcBSplinePoint: function ( p, U, P, u ) {
  79. var span = this.findSpan( p, u, U );
  80. var N = this.calcBasisFunctions( span, u, p, U );
  81. var C = new Vector4( 0, 0, 0, 0 );
  82. for ( var j = 0; j <= p; ++ j ) {
  83. var point = P[ span - p + j ];
  84. var Nj = N[ j ];
  85. var wNj = point.w * Nj;
  86. C.x += point.x * wNj;
  87. C.y += point.y * wNj;
  88. C.z += point.z * wNj;
  89. C.w += point.w * Nj;
  90. }
  91. return C;
  92. },
  93. /*
  94. Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
  95. span : span in which u lies
  96. u : parametric point
  97. p : degree
  98. n : number of derivatives to calculate
  99. U : knot vector
  100. returns array[n+1][p+1] with basis functions derivatives
  101. */
  102. calcBasisFunctionDerivatives: function ( span, u, p, n, U ) {
  103. var zeroArr = [];
  104. for ( var i = 0; i <= p; ++ i )
  105. zeroArr[ i ] = 0.0;
  106. var ders = [];
  107. for ( var i = 0; i <= n; ++ i )
  108. ders[ i ] = zeroArr.slice( 0 );
  109. var ndu = [];
  110. for ( var i = 0; i <= p; ++ i )
  111. ndu[ i ] = zeroArr.slice( 0 );
  112. ndu[ 0 ][ 0 ] = 1.0;
  113. var left = zeroArr.slice( 0 );
  114. var right = zeroArr.slice( 0 );
  115. for ( var j = 1; j <= p; ++ j ) {
  116. left[ j ] = u - U[ span + 1 - j ];
  117. right[ j ] = U[ span + j ] - u;
  118. var saved = 0.0;
  119. for ( var r = 0; r < j; ++ r ) {
  120. var rv = right[ r + 1 ];
  121. var lv = left[ j - r ];
  122. ndu[ j ][ r ] = rv + lv;
  123. var temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
  124. ndu[ r ][ j ] = saved + rv * temp;
  125. saved = lv * temp;
  126. }
  127. ndu[ j ][ j ] = saved;
  128. }
  129. for ( var j = 0; j <= p; ++ j ) {
  130. ders[ 0 ][ j ] = ndu[ j ][ p ];
  131. }
  132. for ( var r = 0; r <= p; ++ r ) {
  133. var s1 = 0;
  134. var s2 = 1;
  135. var a = [];
  136. for ( var i = 0; i <= p; ++ i ) {
  137. a[ i ] = zeroArr.slice( 0 );
  138. }
  139. a[ 0 ][ 0 ] = 1.0;
  140. for ( var k = 1; k <= n; ++ k ) {
  141. var d = 0.0;
  142. var rk = r - k;
  143. var pk = p - k;
  144. if ( r >= k ) {
  145. a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
  146. d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
  147. }
  148. var j1 = ( rk >= - 1 ) ? 1 : - rk;
  149. var j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
  150. for ( var j = j1; j <= j2; ++ j ) {
  151. a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
  152. d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
  153. }
  154. if ( r <= pk ) {
  155. a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
  156. d += a[ s2 ][ k ] * ndu[ r ][ pk ];
  157. }
  158. ders[ k ][ r ] = d;
  159. var j = s1;
  160. s1 = s2;
  161. s2 = j;
  162. }
  163. }
  164. var r = p;
  165. for ( var k = 1; k <= n; ++ k ) {
  166. for ( var j = 0; j <= p; ++ j ) {
  167. ders[ k ][ j ] *= r;
  168. }
  169. r *= p - k;
  170. }
  171. return ders;
  172. },
  173. /*
  174. Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
  175. p : degree
  176. U : knot vector
  177. P : control points
  178. u : Parametric points
  179. nd : number of derivatives
  180. returns array[d+1] with derivatives
  181. */
  182. calcBSplineDerivatives: function ( p, U, P, u, nd ) {
  183. var du = nd < p ? nd : p;
  184. var CK = [];
  185. var span = this.findSpan( p, u, U );
  186. var nders = this.calcBasisFunctionDerivatives( span, u, p, du, U );
  187. var Pw = [];
  188. for ( var i = 0; i < P.length; ++ i ) {
  189. var point = P[ i ].clone();
  190. var w = point.w;
  191. point.x *= w;
  192. point.y *= w;
  193. point.z *= w;
  194. Pw[ i ] = point;
  195. }
  196. for ( var k = 0; k <= du; ++ k ) {
  197. var point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
  198. for ( var j = 1; j <= p; ++ j ) {
  199. point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
  200. }
  201. CK[ k ] = point;
  202. }
  203. for ( var k = du + 1; k <= nd + 1; ++ k ) {
  204. CK[ k ] = new Vector4( 0, 0, 0 );
  205. }
  206. return CK;
  207. },
  208. /*
  209. Calculate "K over I"
  210. returns k!/(i!(k-i)!)
  211. */
  212. calcKoverI: function ( k, i ) {
  213. var nom = 1;
  214. for ( var j = 2; j <= k; ++ j ) {
  215. nom *= j;
  216. }
  217. var denom = 1;
  218. for ( var j = 2; j <= i; ++ j ) {
  219. denom *= j;
  220. }
  221. for ( var j = 2; j <= k - i; ++ j ) {
  222. denom *= j;
  223. }
  224. return nom / denom;
  225. },
  226. /*
  227. Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
  228. Pders : result of function calcBSplineDerivatives
  229. returns array with derivatives for rational curve.
  230. */
  231. calcRationalCurveDerivatives: function ( Pders ) {
  232. var nd = Pders.length;
  233. var Aders = [];
  234. var wders = [];
  235. for ( var i = 0; i < nd; ++ i ) {
  236. var point = Pders[ i ];
  237. Aders[ i ] = new Vector3( point.x, point.y, point.z );
  238. wders[ i ] = point.w;
  239. }
  240. var CK = [];
  241. for ( var k = 0; k < nd; ++ k ) {
  242. var v = Aders[ k ].clone();
  243. for ( var i = 1; i <= k; ++ i ) {
  244. v.sub( CK[ k - i ].clone().multiplyScalar( this.calcKoverI( k, i ) * wders[ i ] ) );
  245. }
  246. CK[ k ] = v.divideScalar( wders[ 0 ] );
  247. }
  248. return CK;
  249. },
  250. /*
  251. Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
  252. p : degree
  253. U : knot vector
  254. P : control points in homogeneous space
  255. u : parametric points
  256. nd : number of derivatives
  257. returns array with derivatives.
  258. */
  259. calcNURBSDerivatives: function ( p, U, P, u, nd ) {
  260. var Pders = this.calcBSplineDerivatives( p, U, P, u, nd );
  261. return this.calcRationalCurveDerivatives( Pders );
  262. },
  263. /*
  264. Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
  265. p1, p2 : degrees of B-Spline surface
  266. U1, U2 : knot vectors
  267. P : control points (x, y, z, w)
  268. u, v : parametric values
  269. returns point for given (u, v)
  270. */
  271. calcSurfacePoint: function ( p, q, U, V, P, u, v, target ) {
  272. var uspan = this.findSpan( p, u, U );
  273. var vspan = this.findSpan( q, v, V );
  274. var Nu = this.calcBasisFunctions( uspan, u, p, U );
  275. var Nv = this.calcBasisFunctions( vspan, v, q, V );
  276. var temp = [];
  277. for ( var l = 0; l <= q; ++ l ) {
  278. temp[ l ] = new Vector4( 0, 0, 0, 0 );
  279. for ( var k = 0; k <= p; ++ k ) {
  280. var point = P[ uspan - p + k ][ vspan - q + l ].clone();
  281. var w = point.w;
  282. point.x *= w;
  283. point.y *= w;
  284. point.z *= w;
  285. temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
  286. }
  287. }
  288. var Sw = new Vector4( 0, 0, 0, 0 );
  289. for ( var l = 0; l <= q; ++ l ) {
  290. Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
  291. }
  292. Sw.divideScalar( Sw.w );
  293. target.set( Sw.x, Sw.y, Sw.z );
  294. }
  295. };
  296. export { NURBSUtils };