TypedArrayUtils.js 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603
  1. console.warn( "THREE.TypedArrayUtils: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/index.html#manual/en/introduction/Import-via-modules." );
  2. THREE.TypedArrayUtils = {};
  3. /**
  4. * In-place quicksort for typed arrays (e.g. for Float32Array)
  5. * provides fast sorting
  6. * useful e.g. for a custom shader and/or BufferGeometry
  7. *
  8. * @author Roman Bolzern <[email protected]>, 2013
  9. * @author I4DS http://www.fhnw.ch/i4ds, 2013
  10. * @license MIT License <http://www.opensource.org/licenses/mit-license.php>
  11. *
  12. * Complexity: http://bigocheatsheet.com/ see Quicksort
  13. *
  14. * Example:
  15. * points: [x, y, z, x, y, z, x, y, z, ...]
  16. * eleSize: 3 //because of (x, y, z)
  17. * orderElement: 0 //order according to x
  18. */
  19. THREE.TypedArrayUtils.quicksortIP = function ( arr, eleSize, orderElement ) {
  20. var stack = [];
  21. var sp = - 1;
  22. var left = 0;
  23. var right = arr.length / eleSize - 1;
  24. var tmp = 0.0, x = 0, y = 0;
  25. var swapF = function ( a, b ) {
  26. a *= eleSize; b *= eleSize;
  27. for ( y = 0; y < eleSize; y ++ ) {
  28. tmp = arr[ a + y ];
  29. arr[ a + y ] = arr[ b + y ];
  30. arr[ b + y ] = tmp;
  31. }
  32. };
  33. var i, j, swap = new Float32Array( eleSize ), temp = new Float32Array( eleSize );
  34. while ( true ) {
  35. if ( right - left <= 25 ) {
  36. for ( j = left + 1; j <= right; j ++ ) {
  37. for ( x = 0; x < eleSize; x ++ ) {
  38. swap[ x ] = arr[ j * eleSize + x ];
  39. }
  40. i = j - 1;
  41. while ( i >= left && arr[ i * eleSize + orderElement ] > swap[ orderElement ] ) {
  42. for ( x = 0; x < eleSize; x ++ ) {
  43. arr[ ( i + 1 ) * eleSize + x ] = arr[ i * eleSize + x ];
  44. }
  45. i --;
  46. }
  47. for ( x = 0; x < eleSize; x ++ ) {
  48. arr[ ( i + 1 ) * eleSize + x ] = swap[ x ];
  49. }
  50. }
  51. if ( sp == - 1 ) break;
  52. right = stack[ sp -- ]; //?
  53. left = stack[ sp -- ];
  54. } else {
  55. var median = ( left + right ) >> 1;
  56. i = left + 1;
  57. j = right;
  58. swapF( median, i );
  59. if ( arr[ left * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
  60. swapF( left, right );
  61. }
  62. if ( arr[ i * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
  63. swapF( i, right );
  64. }
  65. if ( arr[ left * eleSize + orderElement ] > arr[ i * eleSize + orderElement ] ) {
  66. swapF( left, i );
  67. }
  68. for ( x = 0; x < eleSize; x ++ ) {
  69. temp[ x ] = arr[ i * eleSize + x ];
  70. }
  71. while ( true ) {
  72. do i ++; while ( arr[ i * eleSize + orderElement ] < temp[ orderElement ] );
  73. do j --; while ( arr[ j * eleSize + orderElement ] > temp[ orderElement ] );
  74. if ( j < i ) break;
  75. swapF( i, j );
  76. }
  77. for ( x = 0; x < eleSize; x ++ ) {
  78. arr[ ( left + 1 ) * eleSize + x ] = arr[ j * eleSize + x ];
  79. arr[ j * eleSize + x ] = temp[ x ];
  80. }
  81. if ( right - i + 1 >= j - left ) {
  82. stack[ ++ sp ] = i;
  83. stack[ ++ sp ] = right;
  84. right = j - 1;
  85. } else {
  86. stack[ ++ sp ] = left;
  87. stack[ ++ sp ] = j - 1;
  88. left = i;
  89. }
  90. }
  91. }
  92. return arr;
  93. };
  94. /**
  95. * k-d Tree for typed arrays (e.g. for Float32Array), in-place
  96. * provides fast nearest neighbour search
  97. * useful e.g. for a custom shader and/or BufferGeometry, saves tons of memory
  98. * has no insert and remove, only buildup and neares neighbour search
  99. *
  100. * Based on https://github.com/ubilabs/kd-tree-javascript by Ubilabs
  101. *
  102. * @author Roman Bolzern <[email protected]>, 2013
  103. * @author I4DS http://www.fhnw.ch/i4ds, 2013
  104. * @license MIT License <http://www.opensource.org/licenses/mit-license.php>
  105. *
  106. * Requires typed array quicksort
  107. *
  108. * Example:
  109. * points: [x, y, z, x, y, z, x, y, z, ...]
  110. * metric: function(a, b){ return Math.pow(a[0] - b[0], 2) + Math.pow(a[1] - b[1], 2) + Math.pow(a[2] - b[2], 2); } //Manhatten distance
  111. * eleSize: 3 //because of (x, y, z)
  112. *
  113. * Further information (including mathematical properties)
  114. * http://en.wikipedia.org/wiki/Binary_tree
  115. * http://en.wikipedia.org/wiki/K-d_tree
  116. *
  117. * If you want to further minimize memory usage, remove Node.depth and replace in search algorithm with a traversal to root node (see comments at THREE.TypedArrayUtils.Kdtree.prototype.Node)
  118. */
  119. THREE.TypedArrayUtils.Kdtree = function ( points, metric, eleSize ) {
  120. var scope = this;
  121. var maxDepth = 0;
  122. var getPointSet = function ( points, pos ) {
  123. return points.subarray( pos * eleSize, pos * eleSize + eleSize );
  124. };
  125. function buildTree( points, depth, parent, pos ) {
  126. var dim = depth % eleSize,
  127. median,
  128. node,
  129. plength = points.length / eleSize;
  130. if ( depth > maxDepth ) maxDepth = depth;
  131. if ( plength === 0 ) return null;
  132. if ( plength === 1 ) {
  133. return new scope.Node( getPointSet( points, 0 ), depth, parent, pos );
  134. }
  135. THREE.TypedArrayUtils.quicksortIP( points, eleSize, dim );
  136. median = Math.floor( plength / 2 );
  137. node = new scope.Node( getPointSet( points, median ), depth, parent, median + pos );
  138. node.left = buildTree( points.subarray( 0, median * eleSize ), depth + 1, node, pos );
  139. node.right = buildTree( points.subarray( ( median + 1 ) * eleSize, points.length ), depth + 1, node, pos + median + 1 );
  140. return node;
  141. }
  142. this.root = buildTree( points, 0, null, 0 );
  143. this.getMaxDepth = function () {
  144. return maxDepth;
  145. };
  146. this.nearest = function ( point, maxNodes, maxDistance ) {
  147. /* point: array of size eleSize
  148. maxNodes: max amount of nodes to return
  149. maxDistance: maximum distance to point result nodes should have
  150. condition (not implemented): function to test node before it's added to the result list, e.g. test for view frustum
  151. */
  152. var i,
  153. result,
  154. bestNodes;
  155. bestNodes = new THREE.TypedArrayUtils.Kdtree.BinaryHeap(
  156. function ( e ) {
  157. return - e[ 1 ];
  158. }
  159. );
  160. function nearestSearch( node ) {
  161. var bestChild,
  162. dimension = node.depth % eleSize,
  163. ownDistance = metric( point, node.obj ),
  164. linearDistance = 0,
  165. otherChild,
  166. i,
  167. linearPoint = [];
  168. function saveNode( node, distance ) {
  169. bestNodes.push( [ node, distance ] );
  170. if ( bestNodes.size() > maxNodes ) {
  171. bestNodes.pop();
  172. }
  173. }
  174. for ( i = 0; i < eleSize; i += 1 ) {
  175. if ( i === node.depth % eleSize ) {
  176. linearPoint[ i ] = point[ i ];
  177. } else {
  178. linearPoint[ i ] = node.obj[ i ];
  179. }
  180. }
  181. linearDistance = metric( linearPoint, node.obj );
  182. // if it's a leaf
  183. if ( node.right === null && node.left === null ) {
  184. if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
  185. saveNode( node, ownDistance );
  186. }
  187. return;
  188. }
  189. if ( node.right === null ) {
  190. bestChild = node.left;
  191. } else if ( node.left === null ) {
  192. bestChild = node.right;
  193. } else {
  194. if ( point[ dimension ] < node.obj[ dimension ] ) {
  195. bestChild = node.left;
  196. } else {
  197. bestChild = node.right;
  198. }
  199. }
  200. // recursive search
  201. nearestSearch( bestChild );
  202. if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
  203. saveNode( node, ownDistance );
  204. }
  205. // if there's still room or the current distance is nearer than the best distance
  206. if ( bestNodes.size() < maxNodes || Math.abs( linearDistance ) < bestNodes.peek()[ 1 ] ) {
  207. if ( bestChild === node.left ) {
  208. otherChild = node.right;
  209. } else {
  210. otherChild = node.left;
  211. }
  212. if ( otherChild !== null ) {
  213. nearestSearch( otherChild );
  214. }
  215. }
  216. }
  217. if ( maxDistance ) {
  218. for ( i = 0; i < maxNodes; i += 1 ) {
  219. bestNodes.push( [ null, maxDistance ] );
  220. }
  221. }
  222. nearestSearch( scope.root );
  223. result = [];
  224. for ( i = 0; i < maxNodes; i += 1 ) {
  225. if ( bestNodes.content[ i ][ 0 ] ) {
  226. result.push( [ bestNodes.content[ i ][ 0 ], bestNodes.content[ i ][ 1 ] ] );
  227. }
  228. }
  229. return result;
  230. };
  231. };
  232. /**
  233. * If you need to free up additional memory and agree with an additional O( log n ) traversal time you can get rid of "depth" and "pos" in Node:
  234. * Depth can be easily done by adding 1 for every parent (care: root node has depth 0, not 1)
  235. * Pos is a bit tricky: Assuming the tree is balanced (which is the case when after we built it up), perform the following steps:
  236. * By traversing to the root store the path e.g. in a bit pattern (01001011, 0 is left, 1 is right)
  237. * From buildTree we know that "median = Math.floor( plength / 2 );", therefore for each bit...
  238. * 0: amountOfNodesRelevantForUs = Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
  239. * 1: amountOfNodesRelevantForUs = Math.ceil( (pamountOfNodesRelevantForUs - 1) / 2 );
  240. * pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
  241. * when recursion done, we still need to add all left children of target node:
  242. * pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
  243. * and I think you need to +1 for the current position, not sure.. depends, try it out ^^
  244. *
  245. * I experienced that for 200'000 nodes you can get rid of 4 MB memory each, leading to 8 MB memory saved.
  246. */
  247. THREE.TypedArrayUtils.Kdtree.prototype.Node = function ( obj, depth, parent, pos ) {
  248. this.obj = obj;
  249. this.left = null;
  250. this.right = null;
  251. this.parent = parent;
  252. this.depth = depth;
  253. this.pos = pos;
  254. };
  255. /**
  256. * Binary heap implementation
  257. * @author http://eloquentjavascript.net/appendix2.htm
  258. */
  259. THREE.TypedArrayUtils.Kdtree.BinaryHeap = function ( scoreFunction ) {
  260. this.content = [];
  261. this.scoreFunction = scoreFunction;
  262. };
  263. THREE.TypedArrayUtils.Kdtree.BinaryHeap.prototype = {
  264. push: function ( element ) {
  265. // Add the new element to the end of the array.
  266. this.content.push( element );
  267. // Allow it to bubble up.
  268. this.bubbleUp( this.content.length - 1 );
  269. },
  270. pop: function () {
  271. // Store the first element so we can return it later.
  272. var result = this.content[ 0 ];
  273. // Get the element at the end of the array.
  274. var end = this.content.pop();
  275. // If there are any elements left, put the end element at the
  276. // start, and let it sink down.
  277. if ( this.content.length > 0 ) {
  278. this.content[ 0 ] = end;
  279. this.sinkDown( 0 );
  280. }
  281. return result;
  282. },
  283. peek: function () {
  284. return this.content[ 0 ];
  285. },
  286. remove: function ( node ) {
  287. var len = this.content.length;
  288. // To remove a value, we must search through the array to find it.
  289. for ( var i = 0; i < len; i ++ ) {
  290. if ( this.content[ i ] == node ) {
  291. // When it is found, the process seen in 'pop' is repeated
  292. // to fill up the hole.
  293. var end = this.content.pop();
  294. if ( i != len - 1 ) {
  295. this.content[ i ] = end;
  296. if ( this.scoreFunction( end ) < this.scoreFunction( node ) ) {
  297. this.bubbleUp( i );
  298. } else {
  299. this.sinkDown( i );
  300. }
  301. }
  302. return;
  303. }
  304. }
  305. throw new Error( "Node not found." );
  306. },
  307. size: function () {
  308. return this.content.length;
  309. },
  310. bubbleUp: function ( n ) {
  311. // Fetch the element that has to be moved.
  312. var element = this.content[ n ];
  313. // When at 0, an element can not go up any further.
  314. while ( n > 0 ) {
  315. // Compute the parent element's index, and fetch it.
  316. var parentN = Math.floor( ( n + 1 ) / 2 ) - 1,
  317. parent = this.content[ parentN ];
  318. // Swap the elements if the parent is greater.
  319. if ( this.scoreFunction( element ) < this.scoreFunction( parent ) ) {
  320. this.content[ parentN ] = element;
  321. this.content[ n ] = parent;
  322. // Update 'n' to continue at the new position.
  323. n = parentN;
  324. } else {
  325. // Found a parent that is less, no need to move it further.
  326. break;
  327. }
  328. }
  329. },
  330. sinkDown: function ( n ) {
  331. // Look up the target element and its score.
  332. var length = this.content.length,
  333. element = this.content[ n ],
  334. elemScore = this.scoreFunction( element );
  335. while ( true ) {
  336. // Compute the indices of the child elements.
  337. var child2N = ( n + 1 ) * 2, child1N = child2N - 1;
  338. // This is used to store the new position of the element, if any.
  339. var swap = null;
  340. // If the first child exists (is inside the array)...
  341. if ( child1N < length ) {
  342. // Look it up and compute its score.
  343. var child1 = this.content[ child1N ],
  344. child1Score = this.scoreFunction( child1 );
  345. // If the score is less than our element's, we need to swap.
  346. if ( child1Score < elemScore ) swap = child1N;
  347. }
  348. // Do the same checks for the other child.
  349. if ( child2N < length ) {
  350. var child2 = this.content[ child2N ],
  351. child2Score = this.scoreFunction( child2 );
  352. if ( child2Score < ( swap === null ? elemScore : child1Score ) ) swap = child2N;
  353. }
  354. // If the element needs to be moved, swap it, and continue.
  355. if ( swap !== null ) {
  356. this.content[ n ] = this.content[ swap ];
  357. this.content[ swap ] = element;
  358. n = swap;
  359. } else {
  360. // Otherwise, we are done.
  361. break;
  362. }
  363. }
  364. }
  365. };