1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321 |
- import {
- Line3,
- Plane,
- Triangle,
- Vector3
- } from "../../../build/three.module.js";
- /**
- * Ported from: https://github.com/maurizzzio/quickhull3d/ by Mauricio Poppe (https://github.com/maurizzzio)
- */
- var ConvexHull = ( function () {
- var Visible = 0;
- var Deleted = 1;
- var v1 = new Vector3();
- function ConvexHull() {
- this.tolerance = - 1;
- this.faces = []; // the generated faces of the convex hull
- this.newFaces = []; // this array holds the faces that are generated within a single iteration
- // the vertex lists work as follows:
- //
- // let 'a' and 'b' be 'Face' instances
- // let 'v' be points wrapped as instance of 'Vertex'
- //
- // [v, v, ..., v, v, v, ...]
- // ^ ^
- // | |
- // a.outside b.outside
- //
- this.assigned = new VertexList();
- this.unassigned = new VertexList();
- this.vertices = []; // vertices of the hull (internal representation of given geometry data)
- }
- Object.assign( ConvexHull.prototype, {
- setFromPoints: function ( points ) {
- if ( Array.isArray( points ) !== true ) {
- console.error( 'THREE.ConvexHull: Points parameter is not an array.' );
- }
- if ( points.length < 4 ) {
- console.error( 'THREE.ConvexHull: The algorithm needs at least four points.' );
- }
- this.makeEmpty();
- for ( var i = 0, l = points.length; i < l; i ++ ) {
- this.vertices.push( new VertexNode( points[ i ] ) );
- }
- this.compute();
- return this;
- },
- setFromObject: function ( object ) {
- var points = [];
- object.updateMatrixWorld( true );
- object.traverse( function ( node ) {
- var i, l, point;
- var geometry = node.geometry;
- if ( geometry !== undefined ) {
- if ( geometry.isGeometry ) {
- var vertices = geometry.vertices;
- for ( i = 0, l = vertices.length; i < l; i ++ ) {
- point = vertices[ i ].clone();
- point.applyMatrix4( node.matrixWorld );
- points.push( point );
- }
- } else if ( geometry.isBufferGeometry ) {
- var attribute = geometry.attributes.position;
- if ( attribute !== undefined ) {
- for ( i = 0, l = attribute.count; i < l; i ++ ) {
- point = new Vector3();
- point.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
- points.push( point );
- }
- }
- }
- }
- } );
- return this.setFromPoints( points );
- },
- containsPoint: function ( point ) {
- var faces = this.faces;
- for ( var i = 0, l = faces.length; i < l; i ++ ) {
- var face = faces[ i ];
- // compute signed distance and check on what half space the point lies
- if ( face.distanceToPoint( point ) > this.tolerance ) return false;
- }
- return true;
- },
- intersectRay: function ( ray, target ) {
- // based on "Fast Ray-Convex Polyhedron Intersection" by Eric Haines, GRAPHICS GEMS II
- var faces = this.faces;
- var tNear = - Infinity;
- var tFar = Infinity;
- for ( var i = 0, l = faces.length; i < l; i ++ ) {
- var face = faces[ i ];
- // interpret faces as planes for the further computation
- var vN = face.distanceToPoint( ray.origin );
- var vD = face.normal.dot( ray.direction );
- // if the origin is on the positive side of a plane (so the plane can "see" the origin) and
- // the ray is turned away or parallel to the plane, there is no intersection
- if ( vN > 0 && vD >= 0 ) return null;
- // compute the distance from the ray’s origin to the intersection with the plane
- var t = ( vD !== 0 ) ? ( - vN / vD ) : 0;
- // only proceed if the distance is positive. a negative distance means the intersection point
- // lies "behind" the origin
- if ( t <= 0 ) continue;
- // now categorized plane as front-facing or back-facing
- if ( vD > 0 ) {
- // plane faces away from the ray, so this plane is a back-face
- tFar = Math.min( t, tFar );
- } else {
- // front-face
- tNear = Math.max( t, tNear );
- }
- if ( tNear > tFar ) {
- // if tNear ever is greater than tFar, the ray must miss the convex hull
- return null;
- }
- }
- // evaluate intersection point
- // always try tNear first since its the closer intersection point
- if ( tNear !== - Infinity ) {
- ray.at( tNear, target );
- } else {
- ray.at( tFar, target );
- }
- return target;
- },
- intersectsRay: function ( ray ) {
- return this.intersectRay( ray, v1 ) !== null;
- },
- makeEmpty: function () {
- this.faces = [];
- this.vertices = [];
- return this;
- },
- // Adds a vertex to the 'assigned' list of vertices and assigns it to the given face
- addVertexToFace: function ( vertex, face ) {
- vertex.face = face;
- if ( face.outside === null ) {
- this.assigned.append( vertex );
- } else {
- this.assigned.insertBefore( face.outside, vertex );
- }
- face.outside = vertex;
- return this;
- },
- // Removes a vertex from the 'assigned' list of vertices and from the given face
- removeVertexFromFace: function ( vertex, face ) {
- if ( vertex === face.outside ) {
- // fix face.outside link
- if ( vertex.next !== null && vertex.next.face === face ) {
- // face has at least 2 outside vertices, move the 'outside' reference
- face.outside = vertex.next;
- } else {
- // vertex was the only outside vertex that face had
- face.outside = null;
- }
- }
- this.assigned.remove( vertex );
- return this;
- },
- // Removes all the visible vertices that a given face is able to see which are stored in the 'assigned' vertext list
- removeAllVerticesFromFace: function ( face ) {
- if ( face.outside !== null ) {
- // reference to the first and last vertex of this face
- var start = face.outside;
- var end = face.outside;
- while ( end.next !== null && end.next.face === face ) {
- end = end.next;
- }
- this.assigned.removeSubList( start, end );
- // fix references
- start.prev = end.next = null;
- face.outside = null;
- return start;
- }
- },
- // Removes all the visible vertices that 'face' is able to see
- deleteFaceVertices: function ( face, absorbingFace ) {
- var faceVertices = this.removeAllVerticesFromFace( face );
- if ( faceVertices !== undefined ) {
- if ( absorbingFace === undefined ) {
- // mark the vertices to be reassigned to some other face
- this.unassigned.appendChain( faceVertices );
- } else {
- // if there's an absorbing face try to assign as many vertices as possible to it
- var vertex = faceVertices;
- do {
- // we need to buffer the subsequent vertex at this point because the 'vertex.next' reference
- // will be changed by upcoming method calls
- var nextVertex = vertex.next;
- var distance = absorbingFace.distanceToPoint( vertex.point );
- // check if 'vertex' is able to see 'absorbingFace'
- if ( distance > this.tolerance ) {
- this.addVertexToFace( vertex, absorbingFace );
- } else {
- this.unassigned.append( vertex );
- }
- // now assign next vertex
- vertex = nextVertex;
- } while ( vertex !== null );
- }
- }
- return this;
- },
- // Reassigns as many vertices as possible from the unassigned list to the new faces
- resolveUnassignedPoints: function ( newFaces ) {
- if ( this.unassigned.isEmpty() === false ) {
- var vertex = this.unassigned.first();
- do {
- // buffer 'next' reference, see .deleteFaceVertices()
- var nextVertex = vertex.next;
- var maxDistance = this.tolerance;
- var maxFace = null;
- for ( var i = 0; i < newFaces.length; i ++ ) {
- var face = newFaces[ i ];
- if ( face.mark === Visible ) {
- var distance = face.distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- maxFace = face;
- }
- if ( maxDistance > 1000 * this.tolerance ) break;
- }
- }
- // 'maxFace' can be null e.g. if there are identical vertices
- if ( maxFace !== null ) {
- this.addVertexToFace( vertex, maxFace );
- }
- vertex = nextVertex;
- } while ( vertex !== null );
- }
- return this;
- },
- // Computes the extremes of a simplex which will be the initial hull
- computeExtremes: function () {
- var min = new Vector3();
- var max = new Vector3();
- var minVertices = [];
- var maxVertices = [];
- var i, l, j;
- // initially assume that the first vertex is the min/max
- for ( i = 0; i < 3; i ++ ) {
- minVertices[ i ] = maxVertices[ i ] = this.vertices[ 0 ];
- }
- min.copy( this.vertices[ 0 ].point );
- max.copy( this.vertices[ 0 ].point );
- // compute the min/max vertex on all six directions
- for ( i = 0, l = this.vertices.length; i < l; i ++ ) {
- var vertex = this.vertices[ i ];
- var point = vertex.point;
- // update the min coordinates
- for ( j = 0; j < 3; j ++ ) {
- if ( point.getComponent( j ) < min.getComponent( j ) ) {
- min.setComponent( j, point.getComponent( j ) );
- minVertices[ j ] = vertex;
- }
- }
- // update the max coordinates
- for ( j = 0; j < 3; j ++ ) {
- if ( point.getComponent( j ) > max.getComponent( j ) ) {
- max.setComponent( j, point.getComponent( j ) );
- maxVertices[ j ] = vertex;
- }
- }
- }
- // use min/max vectors to compute an optimal epsilon
- this.tolerance = 3 * Number.EPSILON * (
- Math.max( Math.abs( min.x ), Math.abs( max.x ) ) +
- Math.max( Math.abs( min.y ), Math.abs( max.y ) ) +
- Math.max( Math.abs( min.z ), Math.abs( max.z ) )
- );
- return { min: minVertices, max: maxVertices };
- },
- // Computes the initial simplex assigning to its faces all the points
- // that are candidates to form part of the hull
- computeInitialHull: function () {
- var line3, plane, closestPoint;
- return function computeInitialHull() {
- if ( line3 === undefined ) {
- line3 = new Line3();
- plane = new Plane();
- closestPoint = new Vector3();
- }
- var vertex, vertices = this.vertices;
- var extremes = this.computeExtremes();
- var min = extremes.min;
- var max = extremes.max;
- var v0, v1, v2, v3;
- var i, l, j;
- // 1. Find the two vertices 'v0' and 'v1' with the greatest 1d separation
- // (max.x - min.x)
- // (max.y - min.y)
- // (max.z - min.z)
- var distance, maxDistance = 0;
- var index = 0;
- for ( i = 0; i < 3; i ++ ) {
- distance = max[ i ].point.getComponent( i ) - min[ i ].point.getComponent( i );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- index = i;
- }
- }
- v0 = min[ index ];
- v1 = max[ index ];
- // 2. The next vertex 'v2' is the one farthest to the line formed by 'v0' and 'v1'
- maxDistance = 0;
- line3.set( v0.point, v1.point );
- for ( i = 0, l = this.vertices.length; i < l; i ++ ) {
- vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 ) {
- line3.closestPointToPoint( vertex.point, true, closestPoint );
- distance = closestPoint.distanceToSquared( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- v2 = vertex;
- }
- }
- }
- // 3. The next vertex 'v3' is the one farthest to the plane 'v0', 'v1', 'v2'
- maxDistance = - 1;
- plane.setFromCoplanarPoints( v0.point, v1.point, v2.point );
- for ( i = 0, l = this.vertices.length; i < l; i ++ ) {
- vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 && vertex !== v2 ) {
- distance = Math.abs( plane.distanceToPoint( vertex.point ) );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- v3 = vertex;
- }
- }
- }
- var faces = [];
- if ( plane.distanceToPoint( v3.point ) < 0 ) {
- // the face is not able to see the point so 'plane.normal' is pointing outside the tetrahedron
- faces.push(
- Face.create( v0, v1, v2 ),
- Face.create( v3, v1, v0 ),
- Face.create( v3, v2, v1 ),
- Face.create( v3, v0, v2 )
- );
- // set the twin edge
- for ( i = 0; i < 3; i ++ ) {
- j = ( i + 1 ) % 3;
- // join face[ i ] i > 0, with the first face
- faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( j ) );
- // join face[ i ] with face[ i + 1 ], 1 <= i <= 3
- faces[ i + 1 ].getEdge( 1 ).setTwin( faces[ j + 1 ].getEdge( 0 ) );
- }
- } else {
- // the face is able to see the point so 'plane.normal' is pointing inside the tetrahedron
- faces.push(
- Face.create( v0, v2, v1 ),
- Face.create( v3, v0, v1 ),
- Face.create( v3, v1, v2 ),
- Face.create( v3, v2, v0 )
- );
- // set the twin edge
- for ( i = 0; i < 3; i ++ ) {
- j = ( i + 1 ) % 3;
- // join face[ i ] i > 0, with the first face
- faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( ( 3 - i ) % 3 ) );
- // join face[ i ] with face[ i + 1 ]
- faces[ i + 1 ].getEdge( 0 ).setTwin( faces[ j + 1 ].getEdge( 1 ) );
- }
- }
- // the initial hull is the tetrahedron
- for ( i = 0; i < 4; i ++ ) {
- this.faces.push( faces[ i ] );
- }
- // initial assignment of vertices to the faces of the tetrahedron
- for ( i = 0, l = vertices.length; i < l; i ++ ) {
- vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3 ) {
- maxDistance = this.tolerance;
- var maxFace = null;
- for ( j = 0; j < 4; j ++ ) {
- distance = this.faces[ j ].distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- maxFace = this.faces[ j ];
- }
- }
- if ( maxFace !== null ) {
- this.addVertexToFace( vertex, maxFace );
- }
- }
- }
- return this;
- };
- }(),
- // Removes inactive faces
- reindexFaces: function () {
- var activeFaces = [];
- for ( var i = 0; i < this.faces.length; i ++ ) {
- var face = this.faces[ i ];
- if ( face.mark === Visible ) {
- activeFaces.push( face );
- }
- }
- this.faces = activeFaces;
- return this;
- },
- // Finds the next vertex to create faces with the current hull
- nextVertexToAdd: function () {
- // if the 'assigned' list of vertices is empty, no vertices are left. return with 'undefined'
- if ( this.assigned.isEmpty() === false ) {
- var eyeVertex, maxDistance = 0;
- // grap the first available face and start with the first visible vertex of that face
- var eyeFace = this.assigned.first().face;
- var vertex = eyeFace.outside;
- // now calculate the farthest vertex that face can see
- do {
- var distance = eyeFace.distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- eyeVertex = vertex;
- }
- vertex = vertex.next;
- } while ( vertex !== null && vertex.face === eyeFace );
- return eyeVertex;
- }
- },
- // Computes a chain of half edges in CCW order called the 'horizon'.
- // For an edge to be part of the horizon it must join a face that can see
- // 'eyePoint' and a face that cannot see 'eyePoint'.
- computeHorizon: function ( eyePoint, crossEdge, face, horizon ) {
- // moves face's vertices to the 'unassigned' vertex list
- this.deleteFaceVertices( face );
- face.mark = Deleted;
- var edge;
- if ( crossEdge === null ) {
- edge = crossEdge = face.getEdge( 0 );
- } else {
- // start from the next edge since 'crossEdge' was already analyzed
- // (actually 'crossEdge.twin' was the edge who called this method recursively)
- edge = crossEdge.next;
- }
- do {
- var twinEdge = edge.twin;
- var oppositeFace = twinEdge.face;
- if ( oppositeFace.mark === Visible ) {
- if ( oppositeFace.distanceToPoint( eyePoint ) > this.tolerance ) {
- // the opposite face can see the vertex, so proceed with next edge
- this.computeHorizon( eyePoint, twinEdge, oppositeFace, horizon );
- } else {
- // the opposite face can't see the vertex, so this edge is part of the horizon
- horizon.push( edge );
- }
- }
- edge = edge.next;
- } while ( edge !== crossEdge );
- return this;
- },
- // Creates a face with the vertices 'eyeVertex.point', 'horizonEdge.tail' and 'horizonEdge.head' in CCW order
- addAdjoiningFace: function ( eyeVertex, horizonEdge ) {
- // all the half edges are created in ccw order thus the face is always pointing outside the hull
- var face = Face.create( eyeVertex, horizonEdge.tail(), horizonEdge.head() );
- this.faces.push( face );
- // join face.getEdge( - 1 ) with the horizon's opposite edge face.getEdge( - 1 ) = face.getEdge( 2 )
- face.getEdge( - 1 ).setTwin( horizonEdge.twin );
- return face.getEdge( 0 ); // the half edge whose vertex is the eyeVertex
- },
- // Adds 'horizon.length' faces to the hull, each face will be linked with the
- // horizon opposite face and the face on the left/right
- addNewFaces: function ( eyeVertex, horizon ) {
- this.newFaces = [];
- var firstSideEdge = null;
- var previousSideEdge = null;
- for ( var i = 0; i < horizon.length; i ++ ) {
- var horizonEdge = horizon[ i ];
- // returns the right side edge
- var sideEdge = this.addAdjoiningFace( eyeVertex, horizonEdge );
- if ( firstSideEdge === null ) {
- firstSideEdge = sideEdge;
- } else {
- // joins face.getEdge( 1 ) with previousFace.getEdge( 0 )
- sideEdge.next.setTwin( previousSideEdge );
- }
- this.newFaces.push( sideEdge.face );
- previousSideEdge = sideEdge;
- }
- // perform final join of new faces
- firstSideEdge.next.setTwin( previousSideEdge );
- return this;
- },
- // Adds a vertex to the hull
- addVertexToHull: function ( eyeVertex ) {
- var horizon = [];
- this.unassigned.clear();
- // remove 'eyeVertex' from 'eyeVertex.face' so that it can't be added to the 'unassigned' vertex list
- this.removeVertexFromFace( eyeVertex, eyeVertex.face );
- this.computeHorizon( eyeVertex.point, null, eyeVertex.face, horizon );
- this.addNewFaces( eyeVertex, horizon );
- // reassign 'unassigned' vertices to the new faces
- this.resolveUnassignedPoints( this.newFaces );
- return this;
- },
- cleanup: function () {
- this.assigned.clear();
- this.unassigned.clear();
- this.newFaces = [];
- return this;
- },
- compute: function () {
- var vertex;
- this.computeInitialHull();
- // add all available vertices gradually to the hull
- while ( ( vertex = this.nextVertexToAdd() ) !== undefined ) {
- this.addVertexToHull( vertex );
- }
- this.reindexFaces();
- this.cleanup();
- return this;
- }
- } );
- //
- function Face() {
- this.normal = new Vector3();
- this.midpoint = new Vector3();
- this.area = 0;
- this.constant = 0; // signed distance from face to the origin
- this.outside = null; // reference to a vertex in a vertex list this face can see
- this.mark = Visible;
- this.edge = null;
- }
- Object.assign( Face, {
- create: function ( a, b, c ) {
- var face = new Face();
- var e0 = new HalfEdge( a, face );
- var e1 = new HalfEdge( b, face );
- var e2 = new HalfEdge( c, face );
- // join edges
- e0.next = e2.prev = e1;
- e1.next = e0.prev = e2;
- e2.next = e1.prev = e0;
- // main half edge reference
- face.edge = e0;
- return face.compute();
- }
- } );
- Object.assign( Face.prototype, {
- getEdge: function ( i ) {
- var edge = this.edge;
- while ( i > 0 ) {
- edge = edge.next;
- i --;
- }
- while ( i < 0 ) {
- edge = edge.prev;
- i ++;
- }
- return edge;
- },
- compute: function () {
- var triangle;
- return function compute() {
- if ( triangle === undefined ) triangle = new Triangle();
- var a = this.edge.tail();
- var b = this.edge.head();
- var c = this.edge.next.head();
- triangle.set( a.point, b.point, c.point );
- triangle.getNormal( this.normal );
- triangle.getMidpoint( this.midpoint );
- this.area = triangle.getArea();
- this.constant = this.normal.dot( this.midpoint );
- return this;
- };
- }(),
- distanceToPoint: function ( point ) {
- return this.normal.dot( point ) - this.constant;
- }
- } );
- // Entity for a Doubly-Connected Edge List (DCEL).
- function HalfEdge( vertex, face ) {
- this.vertex = vertex;
- this.prev = null;
- this.next = null;
- this.twin = null;
- this.face = face;
- }
- Object.assign( HalfEdge.prototype, {
- head: function () {
- return this.vertex;
- },
- tail: function () {
- return this.prev ? this.prev.vertex : null;
- },
- length: function () {
- var head = this.head();
- var tail = this.tail();
- if ( tail !== null ) {
- return tail.point.distanceTo( head.point );
- }
- return - 1;
- },
- lengthSquared: function () {
- var head = this.head();
- var tail = this.tail();
- if ( tail !== null ) {
- return tail.point.distanceToSquared( head.point );
- }
- return - 1;
- },
- setTwin: function ( edge ) {
- this.twin = edge;
- edge.twin = this;
- return this;
- }
- } );
- // A vertex as a double linked list node.
- function VertexNode( point ) {
- this.point = point;
- this.prev = null;
- this.next = null;
- this.face = null; // the face that is able to see this vertex
- }
- // A double linked list that contains vertex nodes.
- function VertexList() {
- this.head = null;
- this.tail = null;
- }
- Object.assign( VertexList.prototype, {
- first: function () {
- return this.head;
- },
- last: function () {
- return this.tail;
- },
- clear: function () {
- this.head = this.tail = null;
- return this;
- },
- // Inserts a vertex before the target vertex
- insertBefore: function ( target, vertex ) {
- vertex.prev = target.prev;
- vertex.next = target;
- if ( vertex.prev === null ) {
- this.head = vertex;
- } else {
- vertex.prev.next = vertex;
- }
- target.prev = vertex;
- return this;
- },
- // Inserts a vertex after the target vertex
- insertAfter: function ( target, vertex ) {
- vertex.prev = target;
- vertex.next = target.next;
- if ( vertex.next === null ) {
- this.tail = vertex;
- } else {
- vertex.next.prev = vertex;
- }
- target.next = vertex;
- return this;
- },
- // Appends a vertex to the end of the linked list
- append: function ( vertex ) {
- if ( this.head === null ) {
- this.head = vertex;
- } else {
- this.tail.next = vertex;
- }
- vertex.prev = this.tail;
- vertex.next = null; // the tail has no subsequent vertex
- this.tail = vertex;
- return this;
- },
- // Appends a chain of vertices where 'vertex' is the head.
- appendChain: function ( vertex ) {
- if ( this.head === null ) {
- this.head = vertex;
- } else {
- this.tail.next = vertex;
- }
- vertex.prev = this.tail;
- // ensure that the 'tail' reference points to the last vertex of the chain
- while ( vertex.next !== null ) {
- vertex = vertex.next;
- }
- this.tail = vertex;
- return this;
- },
- // Removes a vertex from the linked list
- remove: function ( vertex ) {
- if ( vertex.prev === null ) {
- this.head = vertex.next;
- } else {
- vertex.prev.next = vertex.next;
- }
- if ( vertex.next === null ) {
- this.tail = vertex.prev;
- } else {
- vertex.next.prev = vertex.prev;
- }
- return this;
- },
- // Removes a list of vertices whose 'head' is 'a' and whose 'tail' is b
- removeSubList: function ( a, b ) {
- if ( a.prev === null ) {
- this.head = b.next;
- } else {
- a.prev.next = b.next;
- }
- if ( b.next === null ) {
- this.tail = a.prev;
- } else {
- b.next.prev = a.prev;
- }
- return this;
- },
- isEmpty: function () {
- return this.head === null;
- }
- } );
- return ConvexHull;
- } )();
- export { ConvexHull };
|