NURBSUtils.js 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. console.warn( "THREE.NURBSUtils: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation." );
  2. /**
  3. * NURBS utils
  4. *
  5. * See NURBSCurve and NURBSSurface.
  6. **/
  7. /**************************************************************
  8. * NURBS Utils
  9. **************************************************************/
  10. THREE.NURBSUtils = {
  11. /*
  12. Finds knot vector span.
  13. p : degree
  14. u : parametric value
  15. U : knot vector
  16. returns the span
  17. */
  18. findSpan: function ( p, u, U ) {
  19. var n = U.length - p - 1;
  20. if ( u >= U[ n ] ) {
  21. return n - 1;
  22. }
  23. if ( u <= U[ p ] ) {
  24. return p;
  25. }
  26. var low = p;
  27. var high = n;
  28. var mid = Math.floor( ( low + high ) / 2 );
  29. while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
  30. if ( u < U[ mid ] ) {
  31. high = mid;
  32. } else {
  33. low = mid;
  34. }
  35. mid = Math.floor( ( low + high ) / 2 );
  36. }
  37. return mid;
  38. },
  39. /*
  40. Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
  41. span : span in which u lies
  42. u : parametric point
  43. p : degree
  44. U : knot vector
  45. returns array[p+1] with basis functions values.
  46. */
  47. calcBasisFunctions: function ( span, u, p, U ) {
  48. var N = [];
  49. var left = [];
  50. var right = [];
  51. N[ 0 ] = 1.0;
  52. for ( var j = 1; j <= p; ++ j ) {
  53. left[ j ] = u - U[ span + 1 - j ];
  54. right[ j ] = U[ span + j ] - u;
  55. var saved = 0.0;
  56. for ( var r = 0; r < j; ++ r ) {
  57. var rv = right[ r + 1 ];
  58. var lv = left[ j - r ];
  59. var temp = N[ r ] / ( rv + lv );
  60. N[ r ] = saved + rv * temp;
  61. saved = lv * temp;
  62. }
  63. N[ j ] = saved;
  64. }
  65. return N;
  66. },
  67. /*
  68. Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
  69. p : degree of B-Spline
  70. U : knot vector
  71. P : control points (x, y, z, w)
  72. u : parametric point
  73. returns point for given u
  74. */
  75. calcBSplinePoint: function ( p, U, P, u ) {
  76. var span = this.findSpan( p, u, U );
  77. var N = this.calcBasisFunctions( span, u, p, U );
  78. var C = new THREE.Vector4( 0, 0, 0, 0 );
  79. for ( var j = 0; j <= p; ++ j ) {
  80. var point = P[ span - p + j ];
  81. var Nj = N[ j ];
  82. var wNj = point.w * Nj;
  83. C.x += point.x * wNj;
  84. C.y += point.y * wNj;
  85. C.z += point.z * wNj;
  86. C.w += point.w * Nj;
  87. }
  88. return C;
  89. },
  90. /*
  91. Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
  92. span : span in which u lies
  93. u : parametric point
  94. p : degree
  95. n : number of derivatives to calculate
  96. U : knot vector
  97. returns array[n+1][p+1] with basis functions derivatives
  98. */
  99. calcBasisFunctionDerivatives: function ( span, u, p, n, U ) {
  100. var zeroArr = [];
  101. for ( var i = 0; i <= p; ++ i )
  102. zeroArr[ i ] = 0.0;
  103. var ders = [];
  104. for ( var i = 0; i <= n; ++ i )
  105. ders[ i ] = zeroArr.slice( 0 );
  106. var ndu = [];
  107. for ( var i = 0; i <= p; ++ i )
  108. ndu[ i ] = zeroArr.slice( 0 );
  109. ndu[ 0 ][ 0 ] = 1.0;
  110. var left = zeroArr.slice( 0 );
  111. var right = zeroArr.slice( 0 );
  112. for ( var j = 1; j <= p; ++ j ) {
  113. left[ j ] = u - U[ span + 1 - j ];
  114. right[ j ] = U[ span + j ] - u;
  115. var saved = 0.0;
  116. for ( var r = 0; r < j; ++ r ) {
  117. var rv = right[ r + 1 ];
  118. var lv = left[ j - r ];
  119. ndu[ j ][ r ] = rv + lv;
  120. var temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
  121. ndu[ r ][ j ] = saved + rv * temp;
  122. saved = lv * temp;
  123. }
  124. ndu[ j ][ j ] = saved;
  125. }
  126. for ( var j = 0; j <= p; ++ j ) {
  127. ders[ 0 ][ j ] = ndu[ j ][ p ];
  128. }
  129. for ( var r = 0; r <= p; ++ r ) {
  130. var s1 = 0;
  131. var s2 = 1;
  132. var a = [];
  133. for ( var i = 0; i <= p; ++ i ) {
  134. a[ i ] = zeroArr.slice( 0 );
  135. }
  136. a[ 0 ][ 0 ] = 1.0;
  137. for ( var k = 1; k <= n; ++ k ) {
  138. var d = 0.0;
  139. var rk = r - k;
  140. var pk = p - k;
  141. if ( r >= k ) {
  142. a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
  143. d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
  144. }
  145. var j1 = ( rk >= - 1 ) ? 1 : - rk;
  146. var j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
  147. for ( var j = j1; j <= j2; ++ j ) {
  148. a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
  149. d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
  150. }
  151. if ( r <= pk ) {
  152. a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
  153. d += a[ s2 ][ k ] * ndu[ r ][ pk ];
  154. }
  155. ders[ k ][ r ] = d;
  156. var j = s1;
  157. s1 = s2;
  158. s2 = j;
  159. }
  160. }
  161. var r = p;
  162. for ( var k = 1; k <= n; ++ k ) {
  163. for ( var j = 0; j <= p; ++ j ) {
  164. ders[ k ][ j ] *= r;
  165. }
  166. r *= p - k;
  167. }
  168. return ders;
  169. },
  170. /*
  171. Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
  172. p : degree
  173. U : knot vector
  174. P : control points
  175. u : Parametric points
  176. nd : number of derivatives
  177. returns array[d+1] with derivatives
  178. */
  179. calcBSplineDerivatives: function ( p, U, P, u, nd ) {
  180. var du = nd < p ? nd : p;
  181. var CK = [];
  182. var span = this.findSpan( p, u, U );
  183. var nders = this.calcBasisFunctionDerivatives( span, u, p, du, U );
  184. var Pw = [];
  185. for ( var i = 0; i < P.length; ++ i ) {
  186. var point = P[ i ].clone();
  187. var w = point.w;
  188. point.x *= w;
  189. point.y *= w;
  190. point.z *= w;
  191. Pw[ i ] = point;
  192. }
  193. for ( var k = 0; k <= du; ++ k ) {
  194. var point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
  195. for ( var j = 1; j <= p; ++ j ) {
  196. point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
  197. }
  198. CK[ k ] = point;
  199. }
  200. for ( var k = du + 1; k <= nd + 1; ++ k ) {
  201. CK[ k ] = new THREE.Vector4( 0, 0, 0 );
  202. }
  203. return CK;
  204. },
  205. /*
  206. Calculate "K over I"
  207. returns k!/(i!(k-i)!)
  208. */
  209. calcKoverI: function ( k, i ) {
  210. var nom = 1;
  211. for ( var j = 2; j <= k; ++ j ) {
  212. nom *= j;
  213. }
  214. var denom = 1;
  215. for ( var j = 2; j <= i; ++ j ) {
  216. denom *= j;
  217. }
  218. for ( var j = 2; j <= k - i; ++ j ) {
  219. denom *= j;
  220. }
  221. return nom / denom;
  222. },
  223. /*
  224. Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
  225. Pders : result of function calcBSplineDerivatives
  226. returns array with derivatives for rational curve.
  227. */
  228. calcRationalCurveDerivatives: function ( Pders ) {
  229. var nd = Pders.length;
  230. var Aders = [];
  231. var wders = [];
  232. for ( var i = 0; i < nd; ++ i ) {
  233. var point = Pders[ i ];
  234. Aders[ i ] = new THREE.Vector3( point.x, point.y, point.z );
  235. wders[ i ] = point.w;
  236. }
  237. var CK = [];
  238. for ( var k = 0; k < nd; ++ k ) {
  239. var v = Aders[ k ].clone();
  240. for ( var i = 1; i <= k; ++ i ) {
  241. v.sub( CK[ k - i ].clone().multiplyScalar( this.calcKoverI( k, i ) * wders[ i ] ) );
  242. }
  243. CK[ k ] = v.divideScalar( wders[ 0 ] );
  244. }
  245. return CK;
  246. },
  247. /*
  248. Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
  249. p : degree
  250. U : knot vector
  251. P : control points in homogeneous space
  252. u : parametric points
  253. nd : number of derivatives
  254. returns array with derivatives.
  255. */
  256. calcNURBSDerivatives: function ( p, U, P, u, nd ) {
  257. var Pders = this.calcBSplineDerivatives( p, U, P, u, nd );
  258. return this.calcRationalCurveDerivatives( Pders );
  259. },
  260. /*
  261. Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
  262. p1, p2 : degrees of B-Spline surface
  263. U1, U2 : knot vectors
  264. P : control points (x, y, z, w)
  265. u, v : parametric values
  266. returns point for given (u, v)
  267. */
  268. calcSurfacePoint: function ( p, q, U, V, P, u, v, target ) {
  269. var uspan = this.findSpan( p, u, U );
  270. var vspan = this.findSpan( q, v, V );
  271. var Nu = this.calcBasisFunctions( uspan, u, p, U );
  272. var Nv = this.calcBasisFunctions( vspan, v, q, V );
  273. var temp = [];
  274. for ( var l = 0; l <= q; ++ l ) {
  275. temp[ l ] = new THREE.Vector4( 0, 0, 0, 0 );
  276. for ( var k = 0; k <= p; ++ k ) {
  277. var point = P[ uspan - p + k ][ vspan - q + l ].clone();
  278. var w = point.w;
  279. point.x *= w;
  280. point.y *= w;
  281. point.z *= w;
  282. temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
  283. }
  284. }
  285. var Sw = new THREE.Vector4( 0, 0, 0, 0 );
  286. for ( var l = 0; l <= q; ++ l ) {
  287. Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
  288. }
  289. Sw.divideScalar( Sw.w );
  290. target.set( Sw.x, Sw.y, Sw.z );
  291. }
  292. };