EXRLoader.js 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136
  1. ( function () {
  2. /**
  3. * OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
  4. * Supports reading as UnsignedByte, HalfFloat and Float type data texture.
  5. *
  6. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  7. * implementation, so I have preserved their copyright notices.
  8. */
  9. // /*
  10. // Copyright (c) 2014 - 2017, Syoyo Fujita
  11. // All rights reserved.
  12. // Redistribution and use in source and binary forms, with or without
  13. // modification, are permitted provided that the following conditions are met:
  14. // * Redistributions of source code must retain the above copyright
  15. // notice, this list of conditions and the following disclaimer.
  16. // * Redistributions in binary form must reproduce the above copyright
  17. // notice, this list of conditions and the following disclaimer in the
  18. // documentation and/or other materials provided with the distribution.
  19. // * Neither the name of the Syoyo Fujita nor the
  20. // names of its contributors may be used to endorse or promote products
  21. // derived from this software without specific prior written permission.
  22. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  23. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  24. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  25. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  26. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  27. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  28. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  29. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  30. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  31. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  32. // */
  33. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  34. // ///////////////////////////////////////////////////////////////////////////
  35. // //
  36. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  37. // // Digital Ltd. LLC
  38. // //
  39. // // All rights reserved.
  40. // //
  41. // // Redistribution and use in source and binary forms, with or without
  42. // // modification, are permitted provided that the following conditions are
  43. // // met:
  44. // // * Redistributions of source code must retain the above copyright
  45. // // notice, this list of conditions and the following disclaimer.
  46. // // * Redistributions in binary form must reproduce the above
  47. // // copyright notice, this list of conditions and the following disclaimer
  48. // // in the documentation and/or other materials provided with the
  49. // // distribution.
  50. // // * Neither the name of Industrial Light & Magic nor the names of
  51. // // its contributors may be used to endorse or promote products derived
  52. // // from this software without specific prior written permission.
  53. // //
  54. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  55. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  56. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  57. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  58. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  59. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  60. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  61. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  62. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  63. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  64. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  65. // //
  66. // ///////////////////////////////////////////////////////////////////////////
  67. // // End of OpenEXR license -------------------------------------------------
  68. class EXRLoader extends THREE.DataTextureLoader {
  69. constructor( manager ) {
  70. super( manager );
  71. this.type = THREE.HalfFloatType;
  72. }
  73. parse( buffer ) {
  74. const USHORT_RANGE = 1 << 16;
  75. const BITMAP_SIZE = USHORT_RANGE >> 3;
  76. const HUF_ENCBITS = 16; // literal (value) bit length
  77. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  78. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  79. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  80. const HUF_DECMASK = HUF_DECSIZE - 1;
  81. const NBITS = 16;
  82. const A_OFFSET = 1 << NBITS - 1;
  83. const MOD_MASK = ( 1 << NBITS ) - 1;
  84. const SHORT_ZEROCODE_RUN = 59;
  85. const LONG_ZEROCODE_RUN = 63;
  86. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  87. const ULONG_SIZE = 8;
  88. const FLOAT32_SIZE = 4;
  89. const INT32_SIZE = 4;
  90. const INT16_SIZE = 2;
  91. const INT8_SIZE = 1;
  92. const STATIC_HUFFMAN = 0;
  93. const DEFLATE = 1;
  94. const UNKNOWN = 0;
  95. const LOSSY_DCT = 1;
  96. const RLE = 2;
  97. const logBase = Math.pow( 2.7182818, 2.2 );
  98. function reverseLutFromBitmap( bitmap, lut ) {
  99. let k = 0;
  100. for ( let i = 0; i < USHORT_RANGE; ++ i ) {
  101. if ( i == 0 || bitmap[ i >> 3 ] & 1 << ( i & 7 ) ) {
  102. lut[ k ++ ] = i;
  103. }
  104. }
  105. const n = k - 1;
  106. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  107. return n;
  108. }
  109. function hufClearDecTable( hdec ) {
  110. for ( let i = 0; i < HUF_DECSIZE; i ++ ) {
  111. hdec[ i ] = {};
  112. hdec[ i ].len = 0;
  113. hdec[ i ].lit = 0;
  114. hdec[ i ].p = null;
  115. }
  116. }
  117. const getBitsReturn = {
  118. l: 0,
  119. c: 0,
  120. lc: 0
  121. };
  122. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  123. while ( lc < nBits ) {
  124. c = c << 8 | parseUint8Array( uInt8Array, inOffset );
  125. lc += 8;
  126. }
  127. lc -= nBits;
  128. getBitsReturn.l = c >> lc & ( 1 << nBits ) - 1;
  129. getBitsReturn.c = c;
  130. getBitsReturn.lc = lc;
  131. }
  132. const hufTableBuffer = new Array( 59 );
  133. function hufCanonicalCodeTable( hcode ) {
  134. for ( let i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  135. for ( let i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  136. let c = 0;
  137. for ( let i = 58; i > 0; -- i ) {
  138. const nc = c + hufTableBuffer[ i ] >> 1;
  139. hufTableBuffer[ i ] = c;
  140. c = nc;
  141. }
  142. for ( let i = 0; i < HUF_ENCSIZE; ++ i ) {
  143. const l = hcode[ i ];
  144. if ( l > 0 ) hcode[ i ] = l | hufTableBuffer[ l ] ++ << 6;
  145. }
  146. }
  147. function hufUnpackEncTable( uInt8Array, inOffset, ni, im, iM, hcode ) {
  148. const p = inOffset;
  149. let c = 0;
  150. let lc = 0;
  151. for ( ; im <= iM; im ++ ) {
  152. if ( p.value - inOffset.value > ni ) return false;
  153. getBits( 6, c, lc, uInt8Array, p );
  154. const l = getBitsReturn.l;
  155. c = getBitsReturn.c;
  156. lc = getBitsReturn.lc;
  157. hcode[ im ] = l;
  158. if ( l == LONG_ZEROCODE_RUN ) {
  159. if ( p.value - inOffset.value > ni ) {
  160. throw new Error( 'Something wrong with hufUnpackEncTable' );
  161. }
  162. getBits( 8, c, lc, uInt8Array, p );
  163. let zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  164. c = getBitsReturn.c;
  165. lc = getBitsReturn.lc;
  166. if ( im + zerun > iM + 1 ) {
  167. throw new Error( 'Something wrong with hufUnpackEncTable' );
  168. }
  169. while ( zerun -- ) hcode[ im ++ ] = 0;
  170. im --;
  171. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  172. let zerun = l - SHORT_ZEROCODE_RUN + 2;
  173. if ( im + zerun > iM + 1 ) {
  174. throw new Error( 'Something wrong with hufUnpackEncTable' );
  175. }
  176. while ( zerun -- ) hcode[ im ++ ] = 0;
  177. im --;
  178. }
  179. }
  180. hufCanonicalCodeTable( hcode );
  181. }
  182. function hufLength( code ) {
  183. return code & 63;
  184. }
  185. function hufCode( code ) {
  186. return code >> 6;
  187. }
  188. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  189. for ( ; im <= iM; im ++ ) {
  190. const c = hufCode( hcode[ im ] );
  191. const l = hufLength( hcode[ im ] );
  192. if ( c >> l ) {
  193. throw new Error( 'Invalid table entry' );
  194. }
  195. if ( l > HUF_DECBITS ) {
  196. const pl = hdecod[ c >> l - HUF_DECBITS ];
  197. if ( pl.len ) {
  198. throw new Error( 'Invalid table entry' );
  199. }
  200. pl.lit ++;
  201. if ( pl.p ) {
  202. const p = pl.p;
  203. pl.p = new Array( pl.lit );
  204. for ( let i = 0; i < pl.lit - 1; ++ i ) {
  205. pl.p[ i ] = p[ i ];
  206. }
  207. } else {
  208. pl.p = new Array( 1 );
  209. }
  210. pl.p[ pl.lit - 1 ] = im;
  211. } else if ( l ) {
  212. let plOffset = 0;
  213. for ( let i = 1 << HUF_DECBITS - l; i > 0; i -- ) {
  214. const pl = hdecod[ ( c << HUF_DECBITS - l ) + plOffset ];
  215. if ( pl.len || pl.p ) {
  216. throw new Error( 'Invalid table entry' );
  217. }
  218. pl.len = l;
  219. pl.lit = im;
  220. plOffset ++;
  221. }
  222. }
  223. }
  224. return true;
  225. }
  226. const getCharReturn = {
  227. c: 0,
  228. lc: 0
  229. };
  230. function getChar( c, lc, uInt8Array, inOffset ) {
  231. c = c << 8 | parseUint8Array( uInt8Array, inOffset );
  232. lc += 8;
  233. getCharReturn.c = c;
  234. getCharReturn.lc = lc;
  235. }
  236. const getCodeReturn = {
  237. c: 0,
  238. lc: 0
  239. };
  240. function getCode( po, rlc, c, lc, uInt8Array, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  241. if ( po == rlc ) {
  242. if ( lc < 8 ) {
  243. getChar( c, lc, uInt8Array, inOffset );
  244. c = getCharReturn.c;
  245. lc = getCharReturn.lc;
  246. }
  247. lc -= 8;
  248. let cs = c >> lc;
  249. cs = new Uint8Array( [ cs ] )[ 0 ];
  250. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  251. return false;
  252. }
  253. const s = outBuffer[ outBufferOffset.value - 1 ];
  254. while ( cs -- > 0 ) {
  255. outBuffer[ outBufferOffset.value ++ ] = s;
  256. }
  257. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  258. outBuffer[ outBufferOffset.value ++ ] = po;
  259. } else {
  260. return false;
  261. }
  262. getCodeReturn.c = c;
  263. getCodeReturn.lc = lc;
  264. }
  265. function UInt16( value ) {
  266. return value & 0xFFFF;
  267. }
  268. function Int16( value ) {
  269. const ref = UInt16( value );
  270. return ref > 0x7FFF ? ref - 0x10000 : ref;
  271. }
  272. const wdec14Return = {
  273. a: 0,
  274. b: 0
  275. };
  276. function wdec14( l, h ) {
  277. const ls = Int16( l );
  278. const hs = Int16( h );
  279. const hi = hs;
  280. const ai = ls + ( hi & 1 ) + ( hi >> 1 );
  281. const as = ai;
  282. const bs = ai - hi;
  283. wdec14Return.a = as;
  284. wdec14Return.b = bs;
  285. }
  286. function wdec16( l, h ) {
  287. const m = UInt16( l );
  288. const d = UInt16( h );
  289. const bb = m - ( d >> 1 ) & MOD_MASK;
  290. const aa = d + bb - A_OFFSET & MOD_MASK;
  291. wdec14Return.a = aa;
  292. wdec14Return.b = bb;
  293. }
  294. function wav2Decode( buffer, j, nx, ox, ny, oy, mx ) {
  295. const w14 = mx < 1 << 14;
  296. const n = nx > ny ? ny : nx;
  297. let p = 1;
  298. let p2;
  299. let py;
  300. while ( p <= n ) p <<= 1;
  301. p >>= 1;
  302. p2 = p;
  303. p >>= 1;
  304. while ( p >= 1 ) {
  305. py = 0;
  306. const ey = py + oy * ( ny - p2 );
  307. const oy1 = oy * p;
  308. const oy2 = oy * p2;
  309. const ox1 = ox * p;
  310. const ox2 = ox * p2;
  311. let i00, i01, i10, i11;
  312. for ( ; py <= ey; py += oy2 ) {
  313. let px = py;
  314. const ex = py + ox * ( nx - p2 );
  315. for ( ; px <= ex; px += ox2 ) {
  316. const p01 = px + ox1;
  317. const p10 = px + oy1;
  318. const p11 = p10 + ox1;
  319. if ( w14 ) {
  320. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  321. i00 = wdec14Return.a;
  322. i10 = wdec14Return.b;
  323. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  324. i01 = wdec14Return.a;
  325. i11 = wdec14Return.b;
  326. wdec14( i00, i01 );
  327. buffer[ px + j ] = wdec14Return.a;
  328. buffer[ p01 + j ] = wdec14Return.b;
  329. wdec14( i10, i11 );
  330. buffer[ p10 + j ] = wdec14Return.a;
  331. buffer[ p11 + j ] = wdec14Return.b;
  332. } else {
  333. wdec16( buffer[ px + j ], buffer[ p10 + j ] );
  334. i00 = wdec14Return.a;
  335. i10 = wdec14Return.b;
  336. wdec16( buffer[ p01 + j ], buffer[ p11 + j ] );
  337. i01 = wdec14Return.a;
  338. i11 = wdec14Return.b;
  339. wdec16( i00, i01 );
  340. buffer[ px + j ] = wdec14Return.a;
  341. buffer[ p01 + j ] = wdec14Return.b;
  342. wdec16( i10, i11 );
  343. buffer[ p10 + j ] = wdec14Return.a;
  344. buffer[ p11 + j ] = wdec14Return.b;
  345. }
  346. }
  347. if ( nx & p ) {
  348. const p10 = px + oy1;
  349. if ( w14 ) wdec14( buffer[ px + j ], buffer[ p10 + j ] ); else wdec16( buffer[ px + j ], buffer[ p10 + j ] );
  350. i00 = wdec14Return.a;
  351. buffer[ p10 + j ] = wdec14Return.b;
  352. buffer[ px + j ] = i00;
  353. }
  354. }
  355. if ( ny & p ) {
  356. let px = py;
  357. const ex = py + ox * ( nx - p2 );
  358. for ( ; px <= ex; px += ox2 ) {
  359. const p01 = px + ox1;
  360. if ( w14 ) wdec14( buffer[ px + j ], buffer[ p01 + j ] ); else wdec16( buffer[ px + j ], buffer[ p01 + j ] );
  361. i00 = wdec14Return.a;
  362. buffer[ p01 + j ] = wdec14Return.b;
  363. buffer[ px + j ] = i00;
  364. }
  365. }
  366. p2 = p;
  367. p >>= 1;
  368. }
  369. return py;
  370. }
  371. function hufDecode( encodingTable, decodingTable, uInt8Array, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  372. let c = 0;
  373. let lc = 0;
  374. const outBufferEndOffset = no;
  375. const inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  376. while ( inOffset.value < inOffsetEnd ) {
  377. getChar( c, lc, uInt8Array, inOffset );
  378. c = getCharReturn.c;
  379. lc = getCharReturn.lc;
  380. while ( lc >= HUF_DECBITS ) {
  381. const index = c >> lc - HUF_DECBITS & HUF_DECMASK;
  382. const pl = decodingTable[ index ];
  383. if ( pl.len ) {
  384. lc -= pl.len;
  385. getCode( pl.lit, rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset );
  386. c = getCodeReturn.c;
  387. lc = getCodeReturn.lc;
  388. } else {
  389. if ( ! pl.p ) {
  390. throw new Error( 'hufDecode issues' );
  391. }
  392. let j;
  393. for ( j = 0; j < pl.lit; j ++ ) {
  394. const l = hufLength( encodingTable[ pl.p[ j ] ] );
  395. while ( lc < l && inOffset.value < inOffsetEnd ) {
  396. getChar( c, lc, uInt8Array, inOffset );
  397. c = getCharReturn.c;
  398. lc = getCharReturn.lc;
  399. }
  400. if ( lc >= l ) {
  401. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( c >> lc - l & ( 1 << l ) - 1 ) ) {
  402. lc -= l;
  403. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset );
  404. c = getCodeReturn.c;
  405. lc = getCodeReturn.lc;
  406. break;
  407. }
  408. }
  409. }
  410. if ( j == pl.lit ) {
  411. throw new Error( 'hufDecode issues' );
  412. }
  413. }
  414. }
  415. }
  416. const i = 8 - ni & 7;
  417. c >>= i;
  418. lc -= i;
  419. while ( lc > 0 ) {
  420. const pl = decodingTable[ c << HUF_DECBITS - lc & HUF_DECMASK ];
  421. if ( pl.len ) {
  422. lc -= pl.len;
  423. getCode( pl.lit, rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset );
  424. c = getCodeReturn.c;
  425. lc = getCodeReturn.lc;
  426. } else {
  427. throw new Error( 'hufDecode issues' );
  428. }
  429. }
  430. return true;
  431. }
  432. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  433. const outOffset = {
  434. value: 0
  435. };
  436. const initialInOffset = inOffset.value;
  437. const im = parseUint32( inDataView, inOffset );
  438. const iM = parseUint32( inDataView, inOffset );
  439. inOffset.value += 4;
  440. const nBits = parseUint32( inDataView, inOffset );
  441. inOffset.value += 4;
  442. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  443. throw new Error( 'Something wrong with HUF_ENCSIZE' );
  444. }
  445. const freq = new Array( HUF_ENCSIZE );
  446. const hdec = new Array( HUF_DECSIZE );
  447. hufClearDecTable( hdec );
  448. const ni = nCompressed - ( inOffset.value - initialInOffset );
  449. hufUnpackEncTable( uInt8Array, inOffset, ni, im, iM, freq );
  450. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  451. throw new Error( 'Something wrong with hufUncompress' );
  452. }
  453. hufBuildDecTable( freq, im, iM, hdec );
  454. hufDecode( freq, hdec, uInt8Array, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  455. }
  456. function applyLut( lut, data, nData ) {
  457. for ( let i = 0; i < nData; ++ i ) {
  458. data[ i ] = lut[ data[ i ] ];
  459. }
  460. }
  461. function predictor( source ) {
  462. for ( let t = 1; t < source.length; t ++ ) {
  463. const d = source[ t - 1 ] + source[ t ] - 128;
  464. source[ t ] = d;
  465. }
  466. }
  467. function interleaveScalar( source, out ) {
  468. let t1 = 0;
  469. let t2 = Math.floor( ( source.length + 1 ) / 2 );
  470. let s = 0;
  471. const stop = source.length - 1;
  472. while ( true ) {
  473. if ( s > stop ) break;
  474. out[ s ++ ] = source[ t1 ++ ];
  475. if ( s > stop ) break;
  476. out[ s ++ ] = source[ t2 ++ ];
  477. }
  478. }
  479. function decodeRunLength( source ) {
  480. let size = source.byteLength;
  481. const out = new Array();
  482. let p = 0;
  483. const reader = new DataView( source );
  484. while ( size > 0 ) {
  485. const l = reader.getInt8( p ++ );
  486. if ( l < 0 ) {
  487. const count = - l;
  488. size -= count + 1;
  489. for ( let i = 0; i < count; i ++ ) {
  490. out.push( reader.getUint8( p ++ ) );
  491. }
  492. } else {
  493. const count = l;
  494. size -= 2;
  495. const value = reader.getUint8( p ++ );
  496. for ( let i = 0; i < count + 1; i ++ ) {
  497. out.push( value );
  498. }
  499. }
  500. }
  501. return out;
  502. }
  503. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  504. let dataView = new DataView( outBuffer.buffer );
  505. const width = channelData[ cscSet.idx[ 0 ] ].width;
  506. const height = channelData[ cscSet.idx[ 0 ] ].height;
  507. const numComp = 3;
  508. const numFullBlocksX = Math.floor( width / 8.0 );
  509. const numBlocksX = Math.ceil( width / 8.0 );
  510. const numBlocksY = Math.ceil( height / 8.0 );
  511. const leftoverX = width - ( numBlocksX - 1 ) * 8;
  512. const leftoverY = height - ( numBlocksY - 1 ) * 8;
  513. const currAcComp = {
  514. value: 0
  515. };
  516. const currDcComp = new Array( numComp );
  517. const dctData = new Array( numComp );
  518. const halfZigBlock = new Array( numComp );
  519. const rowBlock = new Array( numComp );
  520. const rowOffsets = new Array( numComp );
  521. for ( let comp = 0; comp < numComp; ++ comp ) {
  522. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  523. currDcComp[ comp ] = comp < 1 ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  524. dctData[ comp ] = new Float32Array( 64 );
  525. halfZigBlock[ comp ] = new Uint16Array( 64 );
  526. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  527. }
  528. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  529. let maxY = 8;
  530. if ( blocky == numBlocksY - 1 ) maxY = leftoverY;
  531. let maxX = 8;
  532. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  533. if ( blockx == numBlocksX - 1 ) maxX = leftoverX;
  534. for ( let comp = 0; comp < numComp; ++ comp ) {
  535. halfZigBlock[ comp ].fill( 0 ); // set block DC component
  536. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ]; // set block AC components
  537. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] ); // UnZigZag block to float
  538. unZigZag( halfZigBlock[ comp ], dctData[ comp ] ); // decode float dct
  539. dctInverse( dctData[ comp ] );
  540. }
  541. if ( numComp == 3 ) {
  542. csc709Inverse( dctData );
  543. }
  544. for ( let comp = 0; comp < numComp; ++ comp ) {
  545. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  546. }
  547. } // blockx
  548. let offset = 0;
  549. for ( let comp = 0; comp < numComp; ++ comp ) {
  550. const type = channelData[ cscSet.idx[ comp ] ].type;
  551. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  552. offset = rowOffsets[ comp ][ y ];
  553. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  554. const src = blockx * 64 + ( y & 0x7 ) * 8;
  555. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  556. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  557. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  558. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  559. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  560. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  561. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  562. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  563. offset += 8 * INT16_SIZE * type;
  564. }
  565. } // handle partial X blocks
  566. if ( numFullBlocksX != numBlocksX ) {
  567. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  568. const offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  569. const src = numFullBlocksX * 64 + ( y & 0x7 ) * 8;
  570. for ( let x = 0; x < maxX; ++ x ) {
  571. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  572. }
  573. }
  574. }
  575. } // comp
  576. } // blocky
  577. const halfRow = new Uint16Array( width );
  578. dataView = new DataView( outBuffer.buffer ); // convert channels back to float, if needed
  579. for ( let comp = 0; comp < numComp; ++ comp ) {
  580. channelData[ cscSet.idx[ comp ] ].decoded = true;
  581. const type = channelData[ cscSet.idx[ comp ] ].type;
  582. if ( channelData[ comp ].type != 2 ) continue;
  583. for ( let y = 0; y < height; ++ y ) {
  584. const offset = rowOffsets[ comp ][ y ];
  585. for ( let x = 0; x < width; ++ x ) {
  586. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  587. }
  588. for ( let x = 0; x < width; ++ x ) {
  589. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  590. }
  591. }
  592. }
  593. }
  594. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  595. let acValue;
  596. let dctComp = 1;
  597. while ( dctComp < 64 ) {
  598. acValue = acBuffer[ currAcComp.value ];
  599. if ( acValue == 0xff00 ) {
  600. dctComp = 64;
  601. } else if ( acValue >> 8 == 0xff ) {
  602. dctComp += acValue & 0xff;
  603. } else {
  604. halfZigBlock[ dctComp ] = acValue;
  605. dctComp ++;
  606. }
  607. currAcComp.value ++;
  608. }
  609. }
  610. function unZigZag( src, dst ) {
  611. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  612. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  613. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  614. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  615. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  616. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  617. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  618. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  619. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  620. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  621. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  622. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  623. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  624. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  625. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  626. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  627. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  628. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  629. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  630. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  631. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  632. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  633. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  634. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  635. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  636. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  637. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  638. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  639. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  640. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  641. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  642. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  643. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  644. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  645. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  646. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  647. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  648. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  649. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  650. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  651. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  652. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  653. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  654. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  655. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  656. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  657. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  658. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  659. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  660. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  661. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  662. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  663. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  664. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  665. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  666. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  667. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  668. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  669. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  670. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  671. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  672. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  673. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  674. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  675. }
  676. function dctInverse( data ) {
  677. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  678. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  679. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  680. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  681. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  682. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  683. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  684. const alpha = new Array( 4 );
  685. const beta = new Array( 4 );
  686. const theta = new Array( 4 );
  687. const gamma = new Array( 4 );
  688. for ( let row = 0; row < 8; ++ row ) {
  689. const rowPtr = row * 8;
  690. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  691. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  692. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  693. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  694. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  695. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  696. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  697. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  698. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  699. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  700. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  701. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  702. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  703. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  704. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  705. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  706. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  707. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  708. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  709. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  710. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  711. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  712. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  713. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  714. }
  715. for ( let column = 0; column < 8; ++ column ) {
  716. alpha[ 0 ] = c * data[ 16 + column ];
  717. alpha[ 1 ] = f * data[ 16 + column ];
  718. alpha[ 2 ] = c * data[ 48 + column ];
  719. alpha[ 3 ] = f * data[ 48 + column ];
  720. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  721. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  722. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  723. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  724. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  725. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  726. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  727. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  728. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  729. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  730. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  731. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  732. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  733. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  734. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  735. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  736. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  737. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  738. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  739. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  740. }
  741. }
  742. function csc709Inverse( data ) {
  743. for ( let i = 0; i < 64; ++ i ) {
  744. const y = data[ 0 ][ i ];
  745. const cb = data[ 1 ][ i ];
  746. const cr = data[ 2 ][ i ];
  747. data[ 0 ][ i ] = y + 1.5747 * cr;
  748. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  749. data[ 2 ][ i ] = y + 1.8556 * cb;
  750. }
  751. }
  752. function convertToHalf( src, dst, idx ) {
  753. for ( let i = 0; i < 64; ++ i ) {
  754. dst[ idx + i ] = THREE.DataUtils.toHalfFloat( toLinear( src[ i ] ) );
  755. }
  756. }
  757. function toLinear( float ) {
  758. if ( float <= 1 ) {
  759. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  760. } else {
  761. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  762. }
  763. }
  764. function uncompressRAW( info ) {
  765. return new DataView( info.array.buffer, info.offset.value, info.size );
  766. }
  767. function uncompressRLE( info ) {
  768. const compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  769. const rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  770. const tmpBuffer = new Uint8Array( rawBuffer.length );
  771. predictor( rawBuffer ); // revert predictor
  772. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  773. return new DataView( tmpBuffer.buffer );
  774. }
  775. function uncompressZIP( info ) {
  776. const compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  777. if ( typeof fflate === 'undefined' ) {
  778. console.error( 'THREE.EXRLoader: External library fflate.min.js required.' );
  779. }
  780. const rawBuffer = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
  781. const tmpBuffer = new Uint8Array( rawBuffer.length );
  782. predictor( rawBuffer ); // revert predictor
  783. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  784. return new DataView( tmpBuffer.buffer );
  785. }
  786. function uncompressPIZ( info ) {
  787. const inDataView = info.viewer;
  788. const inOffset = {
  789. value: info.offset.value
  790. };
  791. const outBuffer = new Uint16Array( info.width * info.scanlineBlockSize * ( info.channels * info.type ) );
  792. const bitmap = new Uint8Array( BITMAP_SIZE ); // Setup channel info
  793. let outBufferEnd = 0;
  794. const pizChannelData = new Array( info.channels );
  795. for ( let i = 0; i < info.channels; i ++ ) {
  796. pizChannelData[ i ] = {};
  797. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  798. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  799. pizChannelData[ i ][ 'nx' ] = info.width;
  800. pizChannelData[ i ][ 'ny' ] = info.lines;
  801. pizChannelData[ i ][ 'size' ] = info.type;
  802. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  803. } // Read range compression data
  804. const minNonZero = parseUint16( inDataView, inOffset );
  805. const maxNonZero = parseUint16( inDataView, inOffset );
  806. if ( maxNonZero >= BITMAP_SIZE ) {
  807. throw new Error( 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE' );
  808. }
  809. if ( minNonZero <= maxNonZero ) {
  810. for ( let i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  811. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  812. }
  813. } // Reverse LUT
  814. const lut = new Uint16Array( USHORT_RANGE );
  815. const maxValue = reverseLutFromBitmap( bitmap, lut );
  816. const length = parseUint32( inDataView, inOffset ); // Huffman decoding
  817. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd ); // Wavelet decoding
  818. for ( let i = 0; i < info.channels; ++ i ) {
  819. const cd = pizChannelData[ i ];
  820. for ( let j = 0; j < pizChannelData[ i ].size; ++ j ) {
  821. wav2Decode( outBuffer, cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, maxValue );
  822. }
  823. } // Expand the pixel data to their original range
  824. applyLut( lut, outBuffer, outBufferEnd ); // Rearrange the pixel data into the format expected by the caller.
  825. let tmpOffset = 0;
  826. const tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  827. for ( let y = 0; y < info.lines; y ++ ) {
  828. for ( let c = 0; c < info.channels; c ++ ) {
  829. const cd = pizChannelData[ c ];
  830. const n = cd.nx * cd.size;
  831. const cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  832. tmpBuffer.set( cp, tmpOffset );
  833. tmpOffset += n * INT16_SIZE;
  834. cd.end += n;
  835. }
  836. }
  837. return new DataView( tmpBuffer.buffer );
  838. }
  839. function uncompressPXR( info ) {
  840. const compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  841. if ( typeof fflate === 'undefined' ) {
  842. console.error( 'THREE.EXRLoader: External library fflate.min.js required.' );
  843. }
  844. const rawBuffer = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
  845. const sz = info.lines * info.channels * info.width;
  846. const tmpBuffer = info.type == 1 ? new Uint16Array( sz ) : new Uint32Array( sz );
  847. let tmpBufferEnd = 0;
  848. let writePtr = 0;
  849. const ptr = new Array( 4 );
  850. for ( let y = 0; y < info.lines; y ++ ) {
  851. for ( let c = 0; c < info.channels; c ++ ) {
  852. let pixel = 0;
  853. switch ( info.type ) {
  854. case 1:
  855. ptr[ 0 ] = tmpBufferEnd;
  856. ptr[ 1 ] = ptr[ 0 ] + info.width;
  857. tmpBufferEnd = ptr[ 1 ] + info.width;
  858. for ( let j = 0; j < info.width; ++ j ) {
  859. const diff = rawBuffer[ ptr[ 0 ] ++ ] << 8 | rawBuffer[ ptr[ 1 ] ++ ];
  860. pixel += diff;
  861. tmpBuffer[ writePtr ] = pixel;
  862. writePtr ++;
  863. }
  864. break;
  865. case 2:
  866. ptr[ 0 ] = tmpBufferEnd;
  867. ptr[ 1 ] = ptr[ 0 ] + info.width;
  868. ptr[ 2 ] = ptr[ 1 ] + info.width;
  869. tmpBufferEnd = ptr[ 2 ] + info.width;
  870. for ( let j = 0; j < info.width; ++ j ) {
  871. const diff = rawBuffer[ ptr[ 0 ] ++ ] << 24 | rawBuffer[ ptr[ 1 ] ++ ] << 16 | rawBuffer[ ptr[ 2 ] ++ ] << 8;
  872. pixel += diff;
  873. tmpBuffer[ writePtr ] = pixel;
  874. writePtr ++;
  875. }
  876. break;
  877. }
  878. }
  879. }
  880. return new DataView( tmpBuffer.buffer );
  881. }
  882. function uncompressDWA( info ) {
  883. const inDataView = info.viewer;
  884. const inOffset = {
  885. value: info.offset.value
  886. };
  887. const outBuffer = new Uint8Array( info.width * info.lines * ( info.channels * info.type * INT16_SIZE ) ); // Read compression header information
  888. const dwaHeader = {
  889. version: parseInt64( inDataView, inOffset ),
  890. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  891. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  892. acCompressedSize: parseInt64( inDataView, inOffset ),
  893. dcCompressedSize: parseInt64( inDataView, inOffset ),
  894. rleCompressedSize: parseInt64( inDataView, inOffset ),
  895. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  896. rleRawSize: parseInt64( inDataView, inOffset ),
  897. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  898. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  899. acCompression: parseInt64( inDataView, inOffset )
  900. };
  901. if ( dwaHeader.version < 2 ) throw new Error( 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported' ); // Read channel ruleset information
  902. const channelRules = new Array();
  903. let ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  904. while ( ruleSize > 0 ) {
  905. const name = parseNullTerminatedString( inDataView.buffer, inOffset );
  906. const value = parseUint8( inDataView, inOffset );
  907. const compression = value >> 2 & 3;
  908. const csc = ( value >> 4 ) - 1;
  909. const index = new Int8Array( [ csc ] )[ 0 ];
  910. const type = parseUint8( inDataView, inOffset );
  911. channelRules.push( {
  912. name: name,
  913. index: index,
  914. type: type,
  915. compression: compression
  916. } );
  917. ruleSize -= name.length + 3;
  918. } // Classify channels
  919. const channels = EXRHeader.channels;
  920. const channelData = new Array( info.channels );
  921. for ( let i = 0; i < info.channels; ++ i ) {
  922. const cd = channelData[ i ] = {};
  923. const channel = channels[ i ];
  924. cd.name = channel.name;
  925. cd.compression = UNKNOWN;
  926. cd.decoded = false;
  927. cd.type = channel.pixelType;
  928. cd.pLinear = channel.pLinear;
  929. cd.width = info.width;
  930. cd.height = info.lines;
  931. }
  932. const cscSet = {
  933. idx: new Array( 3 )
  934. };
  935. for ( let offset = 0; offset < info.channels; ++ offset ) {
  936. const cd = channelData[ offset ];
  937. for ( let i = 0; i < channelRules.length; ++ i ) {
  938. const rule = channelRules[ i ];
  939. if ( cd.name == rule.name ) {
  940. cd.compression = rule.compression;
  941. if ( rule.index >= 0 ) {
  942. cscSet.idx[ rule.index ] = offset;
  943. }
  944. cd.offset = offset;
  945. }
  946. }
  947. }
  948. let acBuffer, dcBuffer, rleBuffer; // Read DCT - AC component data
  949. if ( dwaHeader.acCompressedSize > 0 ) {
  950. switch ( dwaHeader.acCompression ) {
  951. case STATIC_HUFFMAN:
  952. acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  953. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  954. break;
  955. case DEFLATE:
  956. const compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  957. const data = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
  958. acBuffer = new Uint16Array( data.buffer );
  959. inOffset.value += dwaHeader.totalAcUncompressedCount;
  960. break;
  961. }
  962. } // Read DCT - DC component data
  963. if ( dwaHeader.dcCompressedSize > 0 ) {
  964. const zlibInfo = {
  965. array: info.array,
  966. offset: inOffset,
  967. size: dwaHeader.dcCompressedSize
  968. };
  969. dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  970. inOffset.value += dwaHeader.dcCompressedSize;
  971. } // Read RLE compressed data
  972. if ( dwaHeader.rleRawSize > 0 ) {
  973. const compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  974. const data = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
  975. rleBuffer = decodeRunLength( data.buffer );
  976. inOffset.value += dwaHeader.rleCompressedSize;
  977. } // Prepare outbuffer data offset
  978. let outBufferEnd = 0;
  979. const rowOffsets = new Array( channelData.length );
  980. for ( let i = 0; i < rowOffsets.length; ++ i ) {
  981. rowOffsets[ i ] = new Array();
  982. }
  983. for ( let y = 0; y < info.lines; ++ y ) {
  984. for ( let chan = 0; chan < channelData.length; ++ chan ) {
  985. rowOffsets[ chan ].push( outBufferEnd );
  986. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  987. }
  988. } // Lossy DCT decode RGB channels
  989. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer ); // Decode other channels
  990. for ( let i = 0; i < channelData.length; ++ i ) {
  991. const cd = channelData[ i ];
  992. if ( cd.decoded ) continue;
  993. switch ( cd.compression ) {
  994. case RLE:
  995. let row = 0;
  996. let rleOffset = 0;
  997. for ( let y = 0; y < info.lines; ++ y ) {
  998. let rowOffsetBytes = rowOffsets[ i ][ row ];
  999. for ( let x = 0; x < cd.width; ++ x ) {
  1000. for ( let byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  1001. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  1002. }
  1003. rleOffset ++;
  1004. }
  1005. row ++;
  1006. }
  1007. break;
  1008. case LOSSY_DCT: // skip
  1009. default:
  1010. throw new Error( 'EXRLoader.parse: unsupported channel compression' );
  1011. }
  1012. }
  1013. return new DataView( outBuffer.buffer );
  1014. }
  1015. function parseNullTerminatedString( buffer, offset ) {
  1016. const uintBuffer = new Uint8Array( buffer );
  1017. let endOffset = 0;
  1018. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  1019. endOffset += 1;
  1020. }
  1021. const stringValue = new TextDecoder().decode( uintBuffer.slice( offset.value, offset.value + endOffset ) );
  1022. offset.value = offset.value + endOffset + 1;
  1023. return stringValue;
  1024. }
  1025. function parseFixedLengthString( buffer, offset, size ) {
  1026. const stringValue = new TextDecoder().decode( new Uint8Array( buffer ).slice( offset.value, offset.value + size ) );
  1027. offset.value = offset.value + size;
  1028. return stringValue;
  1029. }
  1030. function parseRational( dataView, offset ) {
  1031. const x = parseInt32( dataView, offset );
  1032. const y = parseUint32( dataView, offset );
  1033. return [ x, y ];
  1034. }
  1035. function parseTimecode( dataView, offset ) {
  1036. const x = parseUint32( dataView, offset );
  1037. const y = parseUint32( dataView, offset );
  1038. return [ x, y ];
  1039. }
  1040. function parseInt32( dataView, offset ) {
  1041. const Int32 = dataView.getInt32( offset.value, true );
  1042. offset.value = offset.value + INT32_SIZE;
  1043. return Int32;
  1044. }
  1045. function parseUint32( dataView, offset ) {
  1046. const Uint32 = dataView.getUint32( offset.value, true );
  1047. offset.value = offset.value + INT32_SIZE;
  1048. return Uint32;
  1049. }
  1050. function parseUint8Array( uInt8Array, offset ) {
  1051. const Uint8 = uInt8Array[ offset.value ];
  1052. offset.value = offset.value + INT8_SIZE;
  1053. return Uint8;
  1054. }
  1055. function parseUint8( dataView, offset ) {
  1056. const Uint8 = dataView.getUint8( offset.value );
  1057. offset.value = offset.value + INT8_SIZE;
  1058. return Uint8;
  1059. }
  1060. const parseInt64 = function ( dataView, offset ) {
  1061. const Int64 = Number( dataView.getBigInt64( offset.value, true ) );
  1062. offset.value += ULONG_SIZE;
  1063. return Int64;
  1064. };
  1065. function parseFloat32( dataView, offset ) {
  1066. const float = dataView.getFloat32( offset.value, true );
  1067. offset.value += FLOAT32_SIZE;
  1068. return float;
  1069. }
  1070. function decodeFloat32( dataView, offset ) {
  1071. return THREE.DataUtils.toHalfFloat( parseFloat32( dataView, offset ) );
  1072. } // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1073. function decodeFloat16( binary ) {
  1074. const exponent = ( binary & 0x7C00 ) >> 10,
  1075. fraction = binary & 0x03FF;
  1076. return ( binary >> 15 ? - 1 : 1 ) * ( exponent ? exponent === 0x1F ? fraction ? NaN : Infinity : Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 ) : 6.103515625e-5 * ( fraction / 0x400 ) );
  1077. }
  1078. function parseUint16( dataView, offset ) {
  1079. const Uint16 = dataView.getUint16( offset.value, true );
  1080. offset.value += INT16_SIZE;
  1081. return Uint16;
  1082. }
  1083. function parseFloat16( buffer, offset ) {
  1084. return decodeFloat16( parseUint16( buffer, offset ) );
  1085. }
  1086. function parseChlist( dataView, buffer, offset, size ) {
  1087. const startOffset = offset.value;
  1088. const channels = [];
  1089. while ( offset.value < startOffset + size - 1 ) {
  1090. const name = parseNullTerminatedString( buffer, offset );
  1091. const pixelType = parseInt32( dataView, offset );
  1092. const pLinear = parseUint8( dataView, offset );
  1093. offset.value += 3; // reserved, three chars
  1094. const xSampling = parseInt32( dataView, offset );
  1095. const ySampling = parseInt32( dataView, offset );
  1096. channels.push( {
  1097. name: name,
  1098. pixelType: pixelType,
  1099. pLinear: pLinear,
  1100. xSampling: xSampling,
  1101. ySampling: ySampling
  1102. } );
  1103. }
  1104. offset.value += 1;
  1105. return channels;
  1106. }
  1107. function parseChromaticities( dataView, offset ) {
  1108. const redX = parseFloat32( dataView, offset );
  1109. const redY = parseFloat32( dataView, offset );
  1110. const greenX = parseFloat32( dataView, offset );
  1111. const greenY = parseFloat32( dataView, offset );
  1112. const blueX = parseFloat32( dataView, offset );
  1113. const blueY = parseFloat32( dataView, offset );
  1114. const whiteX = parseFloat32( dataView, offset );
  1115. const whiteY = parseFloat32( dataView, offset );
  1116. return {
  1117. redX: redX,
  1118. redY: redY,
  1119. greenX: greenX,
  1120. greenY: greenY,
  1121. blueX: blueX,
  1122. blueY: blueY,
  1123. whiteX: whiteX,
  1124. whiteY: whiteY
  1125. };
  1126. }
  1127. function parseCompression( dataView, offset ) {
  1128. const compressionCodes = [ 'NO_COMPRESSION', 'RLE_COMPRESSION', 'ZIPS_COMPRESSION', 'ZIP_COMPRESSION', 'PIZ_COMPRESSION', 'PXR24_COMPRESSION', 'B44_COMPRESSION', 'B44A_COMPRESSION', 'DWAA_COMPRESSION', 'DWAB_COMPRESSION' ];
  1129. const compression = parseUint8( dataView, offset );
  1130. return compressionCodes[ compression ];
  1131. }
  1132. function parseBox2i( dataView, offset ) {
  1133. const xMin = parseUint32( dataView, offset );
  1134. const yMin = parseUint32( dataView, offset );
  1135. const xMax = parseUint32( dataView, offset );
  1136. const yMax = parseUint32( dataView, offset );
  1137. return {
  1138. xMin: xMin,
  1139. yMin: yMin,
  1140. xMax: xMax,
  1141. yMax: yMax
  1142. };
  1143. }
  1144. function parseLineOrder( dataView, offset ) {
  1145. const lineOrders = [ 'INCREASING_Y' ];
  1146. const lineOrder = parseUint8( dataView, offset );
  1147. return lineOrders[ lineOrder ];
  1148. }
  1149. function parseV2f( dataView, offset ) {
  1150. const x = parseFloat32( dataView, offset );
  1151. const y = parseFloat32( dataView, offset );
  1152. return [ x, y ];
  1153. }
  1154. function parseV3f( dataView, offset ) {
  1155. const x = parseFloat32( dataView, offset );
  1156. const y = parseFloat32( dataView, offset );
  1157. const z = parseFloat32( dataView, offset );
  1158. return [ x, y, z ];
  1159. }
  1160. function parseValue( dataView, buffer, offset, type, size ) {
  1161. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1162. return parseFixedLengthString( buffer, offset, size );
  1163. } else if ( type === 'chlist' ) {
  1164. return parseChlist( dataView, buffer, offset, size );
  1165. } else if ( type === 'chromaticities' ) {
  1166. return parseChromaticities( dataView, offset );
  1167. } else if ( type === 'compression' ) {
  1168. return parseCompression( dataView, offset );
  1169. } else if ( type === 'box2i' ) {
  1170. return parseBox2i( dataView, offset );
  1171. } else if ( type === 'lineOrder' ) {
  1172. return parseLineOrder( dataView, offset );
  1173. } else if ( type === 'float' ) {
  1174. return parseFloat32( dataView, offset );
  1175. } else if ( type === 'v2f' ) {
  1176. return parseV2f( dataView, offset );
  1177. } else if ( type === 'v3f' ) {
  1178. return parseV3f( dataView, offset );
  1179. } else if ( type === 'int' ) {
  1180. return parseInt32( dataView, offset );
  1181. } else if ( type === 'rational' ) {
  1182. return parseRational( dataView, offset );
  1183. } else if ( type === 'timecode' ) {
  1184. return parseTimecode( dataView, offset );
  1185. } else if ( type === 'preview' ) {
  1186. offset.value += size;
  1187. return 'skipped';
  1188. } else {
  1189. offset.value += size;
  1190. return undefined;
  1191. }
  1192. }
  1193. function parseHeader( dataView, buffer, offset ) {
  1194. const EXRHeader = {};
  1195. if ( dataView.getUint32( 0, true ) != 20000630 ) {
  1196. // magic
  1197. throw new Error( 'THREE.EXRLoader: provided file doesn\'t appear to be in OpenEXR format.' );
  1198. }
  1199. EXRHeader.version = dataView.getUint8( 4 );
  1200. const spec = dataView.getUint8( 5 ); // fullMask
  1201. EXRHeader.spec = {
  1202. singleTile: !! ( spec & 2 ),
  1203. longName: !! ( spec & 4 ),
  1204. deepFormat: !! ( spec & 8 ),
  1205. multiPart: !! ( spec & 16 )
  1206. }; // start of header
  1207. offset.value = 8; // start at 8 - after pre-amble
  1208. let keepReading = true;
  1209. while ( keepReading ) {
  1210. const attributeName = parseNullTerminatedString( buffer, offset );
  1211. if ( attributeName == 0 ) {
  1212. keepReading = false;
  1213. } else {
  1214. const attributeType = parseNullTerminatedString( buffer, offset );
  1215. const attributeSize = parseUint32( dataView, offset );
  1216. const attributeValue = parseValue( dataView, buffer, offset, attributeType, attributeSize );
  1217. if ( attributeValue === undefined ) {
  1218. console.warn( `EXRLoader.parse: skipped unknown header attribute type \'${attributeType}\'.` );
  1219. } else {
  1220. EXRHeader[ attributeName ] = attributeValue;
  1221. }
  1222. }
  1223. }
  1224. if ( ( spec & ~ 0x04 ) != 0 ) {
  1225. // unsupported tiled, deep-image, multi-part
  1226. console.error( 'EXRHeader:', EXRHeader );
  1227. throw new Error( 'THREE.EXRLoader: provided file is currently unsupported.' );
  1228. }
  1229. return EXRHeader;
  1230. }
  1231. function setupDecoder( EXRHeader, dataView, uInt8Array, offset, outputType ) {
  1232. const EXRDecoder = {
  1233. size: 0,
  1234. viewer: dataView,
  1235. array: uInt8Array,
  1236. offset: offset,
  1237. width: EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1,
  1238. height: EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1,
  1239. channels: EXRHeader.channels.length,
  1240. bytesPerLine: null,
  1241. lines: null,
  1242. inputSize: null,
  1243. type: EXRHeader.channels[ 0 ].pixelType,
  1244. uncompress: null,
  1245. getter: null,
  1246. format: null,
  1247. encoding: null
  1248. };
  1249. switch ( EXRHeader.compression ) {
  1250. case 'NO_COMPRESSION':
  1251. EXRDecoder.lines = 1;
  1252. EXRDecoder.uncompress = uncompressRAW;
  1253. break;
  1254. case 'RLE_COMPRESSION':
  1255. EXRDecoder.lines = 1;
  1256. EXRDecoder.uncompress = uncompressRLE;
  1257. break;
  1258. case 'ZIPS_COMPRESSION':
  1259. EXRDecoder.lines = 1;
  1260. EXRDecoder.uncompress = uncompressZIP;
  1261. break;
  1262. case 'ZIP_COMPRESSION':
  1263. EXRDecoder.lines = 16;
  1264. EXRDecoder.uncompress = uncompressZIP;
  1265. break;
  1266. case 'PIZ_COMPRESSION':
  1267. EXRDecoder.lines = 32;
  1268. EXRDecoder.uncompress = uncompressPIZ;
  1269. break;
  1270. case 'PXR24_COMPRESSION':
  1271. EXRDecoder.lines = 16;
  1272. EXRDecoder.uncompress = uncompressPXR;
  1273. break;
  1274. case 'DWAA_COMPRESSION':
  1275. EXRDecoder.lines = 32;
  1276. EXRDecoder.uncompress = uncompressDWA;
  1277. break;
  1278. case 'DWAB_COMPRESSION':
  1279. EXRDecoder.lines = 256;
  1280. EXRDecoder.uncompress = uncompressDWA;
  1281. break;
  1282. default:
  1283. throw new Error( 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported' );
  1284. }
  1285. EXRDecoder.scanlineBlockSize = EXRDecoder.lines;
  1286. if ( EXRDecoder.type == 1 ) {
  1287. // half
  1288. switch ( outputType ) {
  1289. case THREE.FloatType:
  1290. EXRDecoder.getter = parseFloat16;
  1291. EXRDecoder.inputSize = INT16_SIZE;
  1292. break;
  1293. case THREE.HalfFloatType:
  1294. EXRDecoder.getter = parseUint16;
  1295. EXRDecoder.inputSize = INT16_SIZE;
  1296. break;
  1297. }
  1298. } else if ( EXRDecoder.type == 2 ) {
  1299. // float
  1300. switch ( outputType ) {
  1301. case THREE.FloatType:
  1302. EXRDecoder.getter = parseFloat32;
  1303. EXRDecoder.inputSize = FLOAT32_SIZE;
  1304. break;
  1305. case THREE.HalfFloatType:
  1306. EXRDecoder.getter = decodeFloat32;
  1307. EXRDecoder.inputSize = FLOAT32_SIZE;
  1308. }
  1309. } else {
  1310. throw new Error( 'EXRLoader.parse: unsupported pixelType ' + EXRDecoder.type + ' for ' + EXRHeader.compression + '.' );
  1311. }
  1312. EXRDecoder.blockCount = ( EXRHeader.dataWindow.yMax + 1 ) / EXRDecoder.scanlineBlockSize;
  1313. for ( let i = 0; i < EXRDecoder.blockCount; i ++ ) parseInt64( dataView, offset ); // scanlineOffset
  1314. // we should be passed the scanline offset table, ready to start reading pixel data.
  1315. // RGB images will be converted to RGBA format, preventing software emulation in select devices.
  1316. EXRDecoder.outputChannels = EXRDecoder.channels == 3 ? 4 : EXRDecoder.channels;
  1317. const size = EXRDecoder.width * EXRDecoder.height * EXRDecoder.outputChannels;
  1318. switch ( outputType ) {
  1319. case THREE.FloatType:
  1320. EXRDecoder.byteArray = new Float32Array( size ); // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1321. if ( EXRDecoder.channels < EXRDecoder.outputChannels ) EXRDecoder.byteArray.fill( 1, 0, size );
  1322. break;
  1323. case THREE.HalfFloatType:
  1324. EXRDecoder.byteArray = new Uint16Array( size );
  1325. if ( EXRDecoder.channels < EXRDecoder.outputChannels ) EXRDecoder.byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1326. break;
  1327. default:
  1328. console.error( 'THREE.EXRLoader: unsupported type: ', outputType );
  1329. break;
  1330. }
  1331. EXRDecoder.bytesPerLine = EXRDecoder.width * EXRDecoder.inputSize * EXRDecoder.channels;
  1332. if ( EXRDecoder.outputChannels == 4 ) {
  1333. EXRDecoder.format = THREE.RGBAFormat;
  1334. EXRDecoder.encoding = THREE.LinearEncoding;
  1335. } else {
  1336. EXRDecoder.format = THREE.RedFormat;
  1337. EXRDecoder.encoding = THREE.LinearEncoding;
  1338. }
  1339. return EXRDecoder;
  1340. } // start parsing file [START]
  1341. const bufferDataView = new DataView( buffer );
  1342. const uInt8Array = new Uint8Array( buffer );
  1343. const offset = {
  1344. value: 0
  1345. }; // get header information and validate format.
  1346. const EXRHeader = parseHeader( bufferDataView, buffer, offset ); // get input compression information and prepare decoding.
  1347. const EXRDecoder = setupDecoder( EXRHeader, bufferDataView, uInt8Array, offset, this.type );
  1348. const tmpOffset = {
  1349. value: 0
  1350. };
  1351. const channelOffsets = {
  1352. R: 0,
  1353. G: 1,
  1354. B: 2,
  1355. A: 3,
  1356. Y: 0
  1357. };
  1358. for ( let scanlineBlockIdx = 0; scanlineBlockIdx < EXRDecoder.height / EXRDecoder.scanlineBlockSize; scanlineBlockIdx ++ ) {
  1359. const line = parseUint32( bufferDataView, offset ); // line_no
  1360. EXRDecoder.size = parseUint32( bufferDataView, offset ); // data_len
  1361. EXRDecoder.lines = line + EXRDecoder.scanlineBlockSize > EXRDecoder.height ? EXRDecoder.height - line : EXRDecoder.scanlineBlockSize;
  1362. const isCompressed = EXRDecoder.size < EXRDecoder.lines * EXRDecoder.bytesPerLine;
  1363. const viewer = isCompressed ? EXRDecoder.uncompress( EXRDecoder ) : uncompressRAW( EXRDecoder );
  1364. offset.value += EXRDecoder.size;
  1365. for ( let line_y = 0; line_y < EXRDecoder.scanlineBlockSize; line_y ++ ) {
  1366. const true_y = line_y + scanlineBlockIdx * EXRDecoder.scanlineBlockSize;
  1367. if ( true_y >= EXRDecoder.height ) break;
  1368. for ( let channelID = 0; channelID < EXRDecoder.channels; channelID ++ ) {
  1369. const cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1370. for ( let x = 0; x < EXRDecoder.width; x ++ ) {
  1371. tmpOffset.value = ( line_y * ( EXRDecoder.channels * EXRDecoder.width ) + channelID * EXRDecoder.width + x ) * EXRDecoder.inputSize;
  1372. const outIndex = ( EXRDecoder.height - 1 - true_y ) * ( EXRDecoder.width * EXRDecoder.outputChannels ) + x * EXRDecoder.outputChannels + cOff;
  1373. EXRDecoder.byteArray[ outIndex ] = EXRDecoder.getter( viewer, tmpOffset );
  1374. }
  1375. }
  1376. }
  1377. }
  1378. return {
  1379. header: EXRHeader,
  1380. width: EXRDecoder.width,
  1381. height: EXRDecoder.height,
  1382. data: EXRDecoder.byteArray,
  1383. format: EXRDecoder.format,
  1384. encoding: EXRDecoder.encoding,
  1385. type: this.type
  1386. };
  1387. }
  1388. setDataType( value ) {
  1389. this.type = value;
  1390. return this;
  1391. }
  1392. load( url, onLoad, onProgress, onError ) {
  1393. function onLoadCallback( texture, texData ) {
  1394. texture.encoding = texData.encoding;
  1395. texture.minFilter = THREE.LinearFilter;
  1396. texture.magFilter = THREE.LinearFilter;
  1397. texture.generateMipmaps = false;
  1398. texture.flipY = false;
  1399. if ( onLoad ) onLoad( texture, texData );
  1400. }
  1401. return super.load( url, onLoadCallback, onProgress, onError );
  1402. }
  1403. }
  1404. THREE.EXRLoader = EXRLoader;
  1405. } )();