Sky.js 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. ( function () {
  2. /**
  3. * Based on "A Practical Analytic Model for Daylight"
  4. * aka The Preetham Model, the de facto standard analytic skydome model
  5. * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
  6. *
  7. * First implemented by Simon Wallner
  8. * http://simonwallner.at/project/atmospheric-scattering/
  9. *
  10. * Improved by Martin Upitis
  11. * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
  12. *
  13. * Three.js integration by zz85 http://twitter.com/blurspline
  14. */
  15. class Sky extends THREE.Mesh {
  16. constructor() {
  17. const shader = Sky.SkyShader;
  18. const material = new THREE.ShaderMaterial( {
  19. name: 'SkyShader',
  20. fragmentShader: shader.fragmentShader,
  21. vertexShader: shader.vertexShader,
  22. uniforms: THREE.UniformsUtils.clone( shader.uniforms ),
  23. side: THREE.BackSide,
  24. depthWrite: false
  25. } );
  26. super( new THREE.BoxGeometry( 1, 1, 1 ), material );
  27. this.isSky = true;
  28. }
  29. }
  30. Sky.SkyShader = {
  31. uniforms: {
  32. 'turbidity': {
  33. value: 2
  34. },
  35. 'rayleigh': {
  36. value: 1
  37. },
  38. 'mieCoefficient': {
  39. value: 0.005
  40. },
  41. 'mieDirectionalG': {
  42. value: 0.8
  43. },
  44. 'sunPosition': {
  45. value: new THREE.Vector3()
  46. },
  47. 'up': {
  48. value: new THREE.Vector3( 0, 1, 0 )
  49. }
  50. },
  51. vertexShader: /* glsl */`
  52. uniform vec3 sunPosition;
  53. uniform float rayleigh;
  54. uniform float turbidity;
  55. uniform float mieCoefficient;
  56. uniform vec3 up;
  57. varying vec3 vWorldPosition;
  58. varying vec3 vSunDirection;
  59. varying float vSunfade;
  60. varying vec3 vBetaR;
  61. varying vec3 vBetaM;
  62. varying float vSunE;
  63. // constants for atmospheric scattering
  64. const float e = 2.71828182845904523536028747135266249775724709369995957;
  65. const float pi = 3.141592653589793238462643383279502884197169;
  66. // wavelength of used primaries, according to preetham
  67. const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );
  68. // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
  69. // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
  70. const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );
  71. // mie stuff
  72. // K coefficient for the primaries
  73. const float v = 4.0;
  74. const vec3 K = vec3( 0.686, 0.678, 0.666 );
  75. // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
  76. const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );
  77. // earth shadow hack
  78. // cutoffAngle = pi / 1.95;
  79. const float cutoffAngle = 1.6110731556870734;
  80. const float steepness = 1.5;
  81. const float EE = 1000.0;
  82. float sunIntensity( float zenithAngleCos ) {
  83. zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );
  84. return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );
  85. }
  86. vec3 totalMie( float T ) {
  87. float c = ( 0.2 * T ) * 10E-18;
  88. return 0.434 * c * MieConst;
  89. }
  90. void main() {
  91. vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
  92. vWorldPosition = worldPosition.xyz;
  93. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  94. gl_Position.z = gl_Position.w; // set z to camera.far
  95. vSunDirection = normalize( sunPosition );
  96. vSunE = sunIntensity( dot( vSunDirection, up ) );
  97. vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );
  98. float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );
  99. // extinction (absorbtion + out scattering)
  100. // rayleigh coefficients
  101. vBetaR = totalRayleigh * rayleighCoefficient;
  102. // mie coefficients
  103. vBetaM = totalMie( turbidity ) * mieCoefficient;
  104. }`,
  105. fragmentShader: /* glsl */`
  106. varying vec3 vWorldPosition;
  107. varying vec3 vSunDirection;
  108. varying float vSunfade;
  109. varying vec3 vBetaR;
  110. varying vec3 vBetaM;
  111. varying float vSunE;
  112. uniform float mieDirectionalG;
  113. uniform vec3 up;
  114. const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );
  115. // constants for atmospheric scattering
  116. const float pi = 3.141592653589793238462643383279502884197169;
  117. const float n = 1.0003; // refractive index of air
  118. const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
  119. // optical length at zenith for molecules
  120. const float rayleighZenithLength = 8.4E3;
  121. const float mieZenithLength = 1.25E3;
  122. // 66 arc seconds -> degrees, and the cosine of that
  123. const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;
  124. // 3.0 / ( 16.0 * pi )
  125. const float THREE_OVER_SIXTEENPI = 0.05968310365946075;
  126. // 1.0 / ( 4.0 * pi )
  127. const float ONE_OVER_FOURPI = 0.07957747154594767;
  128. float rayleighPhase( float cosTheta ) {
  129. return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );
  130. }
  131. float hgPhase( float cosTheta, float g ) {
  132. float g2 = pow( g, 2.0 );
  133. float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );
  134. return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );
  135. }
  136. void main() {
  137. vec3 direction = normalize( vWorldPosition - cameraPos );
  138. // optical length
  139. // cutoff angle at 90 to avoid singularity in next formula.
  140. float zenithAngle = acos( max( 0.0, dot( up, direction ) ) );
  141. float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );
  142. float sR = rayleighZenithLength * inverse;
  143. float sM = mieZenithLength * inverse;
  144. // combined extinction factor
  145. vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );
  146. // in scattering
  147. float cosTheta = dot( direction, vSunDirection );
  148. float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );
  149. vec3 betaRTheta = vBetaR * rPhase;
  150. float mPhase = hgPhase( cosTheta, mieDirectionalG );
  151. vec3 betaMTheta = vBetaM * mPhase;
  152. vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );
  153. Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );
  154. // nightsky
  155. float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]
  156. float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]
  157. vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );
  158. vec3 L0 = vec3( 0.1 ) * Fex;
  159. // composition + solar disc
  160. float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );
  161. L0 += ( vSunE * 19000.0 * Fex ) * sundisk;
  162. vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );
  163. vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );
  164. gl_FragColor = vec4( retColor, 1.0 );
  165. #include <tonemapping_fragment>
  166. #include <encodings_fragment>
  167. }`
  168. };
  169. THREE.Sky = Sky;
  170. } )();