SimplexNoise.js 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. ( function () {
  2. // Ported from Stefan Gustavson's java implementation
  3. // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  4. // Read Stefan's excellent paper for details on how this code works.
  5. //
  6. // Sean McCullough [email protected]
  7. //
  8. // Added 4D noise
  9. /**
  10. * You can pass in a random number generator object if you like.
  11. * It is assumed to have a random() method.
  12. */
  13. class SimplexNoise {
  14. constructor( r = Math ) {
  15. this.grad3 = [[ 1, 1, 0 ], [ - 1, 1, 0 ], [ 1, - 1, 0 ], [ - 1, - 1, 0 ], [ 1, 0, 1 ], [ - 1, 0, 1 ], [ 1, 0, - 1 ], [ - 1, 0, - 1 ], [ 0, 1, 1 ], [ 0, - 1, 1 ], [ 0, 1, - 1 ], [ 0, - 1, - 1 ]];
  16. this.grad4 = [[ 0, 1, 1, 1 ], [ 0, 1, 1, - 1 ], [ 0, 1, - 1, 1 ], [ 0, 1, - 1, - 1 ], [ 0, - 1, 1, 1 ], [ 0, - 1, 1, - 1 ], [ 0, - 1, - 1, 1 ], [ 0, - 1, - 1, - 1 ], [ 1, 0, 1, 1 ], [ 1, 0, 1, - 1 ], [ 1, 0, - 1, 1 ], [ 1, 0, - 1, - 1 ], [ - 1, 0, 1, 1 ], [ - 1, 0, 1, - 1 ], [ - 1, 0, - 1, 1 ], [ - 1, 0, - 1, - 1 ], [ 1, 1, 0, 1 ], [ 1, 1, 0, - 1 ], [ 1, - 1, 0, 1 ], [ 1, - 1, 0, - 1 ], [ - 1, 1, 0, 1 ], [ - 1, 1, 0, - 1 ], [ - 1, - 1, 0, 1 ], [ - 1, - 1, 0, - 1 ], [ 1, 1, 1, 0 ], [ 1, 1, - 1, 0 ], [ 1, - 1, 1, 0 ], [ 1, - 1, - 1, 0 ], [ - 1, 1, 1, 0 ], [ - 1, 1, - 1, 0 ], [ - 1, - 1, 1, 0 ], [ - 1, - 1, - 1, 0 ]];
  17. this.p = [];
  18. for ( let i = 0; i < 256; i ++ ) {
  19. this.p[ i ] = Math.floor( r.random() * 256 );
  20. }
  21. // To remove the need for index wrapping, double the permutation table length
  22. this.perm = [];
  23. for ( let i = 0; i < 512; i ++ ) {
  24. this.perm[ i ] = this.p[ i & 255 ];
  25. }
  26. // A lookup table to traverse the simplex around a given point in 4D.
  27. // Details can be found where this table is used, in the 4D noise method.
  28. this.simplex = [[ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 2, 3, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 3, 0 ], [ 0, 2, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 3, 2, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 0, 3 ], [ 0, 0, 0, 0 ], [ 1, 3, 0, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ], [ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 3, 1 ], [ 0, 0, 0, 0 ], [ 2, 1, 3, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ], [ 0, 0, 0, 0 ], [ 3, 1, 2, 0 ], [ 2, 1, 0, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 1, 0, 2 ], [ 0, 0, 0, 0 ], [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]];
  29. }
  30. dot( g, x, y ) {
  31. return g[ 0 ] * x + g[ 1 ] * y;
  32. }
  33. dot3( g, x, y, z ) {
  34. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z;
  35. }
  36. dot4( g, x, y, z, w ) {
  37. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w;
  38. }
  39. noise( xin, yin ) {
  40. let n0; // Noise contributions from the three corners
  41. let n1;
  42. let n2;
  43. // Skew the input space to determine which simplex cell we're in
  44. const F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 );
  45. const s = ( xin + yin ) * F2; // Hairy factor for 2D
  46. const i = Math.floor( xin + s );
  47. const j = Math.floor( yin + s );
  48. const G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0;
  49. const t = ( i + j ) * G2;
  50. const X0 = i - t; // Unskew the cell origin back to (x,y) space
  51. const Y0 = j - t;
  52. const x0 = xin - X0; // The x,y distances from the cell origin
  53. const y0 = yin - Y0;
  54. // For the 2D case, the simplex shape is an equilateral triangle.
  55. // Determine which simplex we are in.
  56. let i1; // Offsets for second (middle) corner of simplex in (i,j) coords
  57. let j1;
  58. if ( x0 > y0 ) {
  59. i1 = 1;
  60. j1 = 0;
  61. // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  62. } else {
  63. i1 = 0;
  64. j1 = 1;
  65. } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  66. // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  67. // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  68. // c = (3-sqrt(3))/6
  69. const x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  70. const y1 = y0 - j1 + G2;
  71. const x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
  72. const y2 = y0 - 1.0 + 2.0 * G2;
  73. // Work out the hashed gradient indices of the three simplex corners
  74. const ii = i & 255;
  75. const jj = j & 255;
  76. const gi0 = this.perm[ ii + this.perm[ jj ] ] % 12;
  77. const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ] ] % 12;
  78. const gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ] ] % 12;
  79. // Calculate the contribution from the three corners
  80. let t0 = 0.5 - x0 * x0 - y0 * y0;
  81. if ( t0 < 0 ) n0 = 0.0; else {
  82. t0 *= t0;
  83. n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient
  84. }
  85. let t1 = 0.5 - x1 * x1 - y1 * y1;
  86. if ( t1 < 0 ) n1 = 0.0; else {
  87. t1 *= t1;
  88. n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 );
  89. }
  90. let t2 = 0.5 - x2 * x2 - y2 * y2;
  91. if ( t2 < 0 ) n2 = 0.0; else {
  92. t2 *= t2;
  93. n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 );
  94. }
  95. // Add contributions from each corner to get the final noise value.
  96. // The result is scaled to return values in the interval [-1,1].
  97. return 70.0 * ( n0 + n1 + n2 );
  98. }
  99. // 3D simplex noise
  100. noise3d( xin, yin, zin ) {
  101. let n0; // Noise contributions from the four corners
  102. let n1;
  103. let n2;
  104. let n3;
  105. // Skew the input space to determine which simplex cell we're in
  106. const F3 = 1.0 / 3.0;
  107. const s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D
  108. const i = Math.floor( xin + s );
  109. const j = Math.floor( yin + s );
  110. const k = Math.floor( zin + s );
  111. const G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
  112. const t = ( i + j + k ) * G3;
  113. const X0 = i - t; // Unskew the cell origin back to (x,y,z) space
  114. const Y0 = j - t;
  115. const Z0 = k - t;
  116. const x0 = xin - X0; // The x,y,z distances from the cell origin
  117. const y0 = yin - Y0;
  118. const z0 = zin - Z0;
  119. // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  120. // Determine which simplex we are in.
  121. let i1; // Offsets for second corner of simplex in (i,j,k) coords
  122. let j1;
  123. let k1;
  124. let i2; // Offsets for third corner of simplex in (i,j,k) coords
  125. let j2;
  126. let k2;
  127. if ( x0 >= y0 ) {
  128. if ( y0 >= z0 ) {
  129. i1 = 1;
  130. j1 = 0;
  131. k1 = 0;
  132. i2 = 1;
  133. j2 = 1;
  134. k2 = 0;
  135. // X Y Z order
  136. } else if ( x0 >= z0 ) {
  137. i1 = 1;
  138. j1 = 0;
  139. k1 = 0;
  140. i2 = 1;
  141. j2 = 0;
  142. k2 = 1;
  143. // X Z Y order
  144. } else {
  145. i1 = 0;
  146. j1 = 0;
  147. k1 = 1;
  148. i2 = 1;
  149. j2 = 0;
  150. k2 = 1;
  151. } // Z X Y order
  152. } else {
  153. // x0<y0
  154. if ( y0 < z0 ) {
  155. i1 = 0;
  156. j1 = 0;
  157. k1 = 1;
  158. i2 = 0;
  159. j2 = 1;
  160. k2 = 1;
  161. // Z Y X order
  162. } else if ( x0 < z0 ) {
  163. i1 = 0;
  164. j1 = 1;
  165. k1 = 0;
  166. i2 = 0;
  167. j2 = 1;
  168. k2 = 1;
  169. // Y Z X order
  170. } else {
  171. i1 = 0;
  172. j1 = 1;
  173. k1 = 0;
  174. i2 = 1;
  175. j2 = 1;
  176. k2 = 0;
  177. } // Y X Z order
  178. }
  179. // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  180. // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  181. // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  182. // c = 1/6.
  183. const x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  184. const y1 = y0 - j1 + G3;
  185. const z1 = z0 - k1 + G3;
  186. const x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
  187. const y2 = y0 - j2 + 2.0 * G3;
  188. const z2 = z0 - k2 + 2.0 * G3;
  189. const x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
  190. const y3 = y0 - 1.0 + 3.0 * G3;
  191. const z3 = z0 - 1.0 + 3.0 * G3;
  192. // Work out the hashed gradient indices of the four simplex corners
  193. const ii = i & 255;
  194. const jj = j & 255;
  195. const kk = k & 255;
  196. const gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ] ] ] % 12;
  197. const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ] ] ] % 12;
  198. const gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ] ] ] % 12;
  199. const gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ] ] ] % 12;
  200. // Calculate the contribution from the four corners
  201. let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
  202. if ( t0 < 0 ) n0 = 0.0; else {
  203. t0 *= t0;
  204. n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 );
  205. }
  206. let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
  207. if ( t1 < 0 ) n1 = 0.0; else {
  208. t1 *= t1;
  209. n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 );
  210. }
  211. let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
  212. if ( t2 < 0 ) n2 = 0.0; else {
  213. t2 *= t2;
  214. n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 );
  215. }
  216. let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
  217. if ( t3 < 0 ) n3 = 0.0; else {
  218. t3 *= t3;
  219. n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 );
  220. }
  221. // Add contributions from each corner to get the final noise value.
  222. // The result is scaled to stay just inside [-1,1]
  223. return 32.0 * ( n0 + n1 + n2 + n3 );
  224. }
  225. // 4D simplex noise
  226. noise4d( x, y, z, w ) {
  227. // For faster and easier lookups
  228. const grad4 = this.grad4;
  229. const simplex = this.simplex;
  230. const perm = this.perm;
  231. // The skewing and unskewing factors are hairy again for the 4D case
  232. const F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0;
  233. const G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0;
  234. let n0; // Noise contributions from the five corners
  235. let n1;
  236. let n2;
  237. let n3;
  238. let n4;
  239. // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
  240. const s = ( x + y + z + w ) * F4; // Factor for 4D skewing
  241. const i = Math.floor( x + s );
  242. const j = Math.floor( y + s );
  243. const k = Math.floor( z + s );
  244. const l = Math.floor( w + s );
  245. const t = ( i + j + k + l ) * G4; // Factor for 4D unskewing
  246. const X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
  247. const Y0 = j - t;
  248. const Z0 = k - t;
  249. const W0 = l - t;
  250. const x0 = x - X0; // The x,y,z,w distances from the cell origin
  251. const y0 = y - Y0;
  252. const z0 = z - Z0;
  253. const w0 = w - W0;
  254. // For the 4D case, the simplex is a 4D shape I won't even try to describe.
  255. // To find out which of the 24 possible simplices we're in, we need to
  256. // determine the magnitude ordering of x0, y0, z0 and w0.
  257. // The method below is a good way of finding the ordering of x,y,z,w and
  258. // then find the correct traversal order for the simplex we’re in.
  259. // First, six pair-wise comparisons are performed between each possible pair
  260. // of the four coordinates, and the results are used to add up binary bits
  261. // for an integer index.
  262. const c1 = x0 > y0 ? 32 : 0;
  263. const c2 = x0 > z0 ? 16 : 0;
  264. const c3 = y0 > z0 ? 8 : 0;
  265. const c4 = x0 > w0 ? 4 : 0;
  266. const c5 = y0 > w0 ? 2 : 0;
  267. const c6 = z0 > w0 ? 1 : 0;
  268. const c = c1 + c2 + c3 + c4 + c5 + c6;
  269. // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
  270. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
  271. // impossible. Only the 24 indices which have non-zero entries make any sense.
  272. // We use a thresholding to set the coordinates in turn from the largest magnitude.
  273. // The number 3 in the "simplex" array is at the position of the largest coordinate.
  274. const i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0;
  275. const j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0;
  276. const k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0;
  277. const l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0;
  278. // The number 2 in the "simplex" array is at the second largest coordinate.
  279. const i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0;
  280. const j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0;
  281. const k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0;
  282. const l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0;
  283. // The number 1 in the "simplex" array is at the second smallest coordinate.
  284. const i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0;
  285. const j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0;
  286. const k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0;
  287. const l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0;
  288. // The fifth corner has all coordinate offsets = 1, so no need to look that up.
  289. const x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
  290. const y1 = y0 - j1 + G4;
  291. const z1 = z0 - k1 + G4;
  292. const w1 = w0 - l1 + G4;
  293. const x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
  294. const y2 = y0 - j2 + 2.0 * G4;
  295. const z2 = z0 - k2 + 2.0 * G4;
  296. const w2 = w0 - l2 + 2.0 * G4;
  297. const x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
  298. const y3 = y0 - j3 + 3.0 * G4;
  299. const z3 = z0 - k3 + 3.0 * G4;
  300. const w3 = w0 - l3 + 3.0 * G4;
  301. const x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
  302. const y4 = y0 - 1.0 + 4.0 * G4;
  303. const z4 = z0 - 1.0 + 4.0 * G4;
  304. const w4 = w0 - 1.0 + 4.0 * G4;
  305. // Work out the hashed gradient indices of the five simplex corners
  306. const ii = i & 255;
  307. const jj = j & 255;
  308. const kk = k & 255;
  309. const ll = l & 255;
  310. const gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ] ] ] ] % 32;
  311. const gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ] ] ] ] % 32;
  312. const gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ] ] ] ] % 32;
  313. const gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ] ] ] ] % 32;
  314. const gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ] ] ] ] % 32;
  315. // Calculate the contribution from the five corners
  316. let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
  317. if ( t0 < 0 ) n0 = 0.0; else {
  318. t0 *= t0;
  319. n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 );
  320. }
  321. let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
  322. if ( t1 < 0 ) n1 = 0.0; else {
  323. t1 *= t1;
  324. n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 );
  325. }
  326. let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
  327. if ( t2 < 0 ) n2 = 0.0; else {
  328. t2 *= t2;
  329. n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 );
  330. }
  331. let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
  332. if ( t3 < 0 ) n3 = 0.0; else {
  333. t3 *= t3;
  334. n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 );
  335. }
  336. let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
  337. if ( t4 < 0 ) n4 = 0.0; else {
  338. t4 *= t4;
  339. n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 );
  340. }
  341. // Sum up and scale the result to cover the range [-1,1]
  342. return 27.0 * ( n0 + n1 + n2 + n3 + n4 );
  343. }
  344. }
  345. THREE.SimplexNoise = SimplexNoise;
  346. } )();