2
0

SSAOShader.js 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. import {
  2. Matrix4,
  3. Vector2
  4. } from 'three';
  5. /**
  6. * References:
  7. * http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
  8. * https://learnopengl.com/Advanced-Lighting/SSAO
  9. * https://github.com/McNopper/OpenGL/blob/master/Example28/shader/ssao.frag.glsl
  10. */
  11. const SSAOShader = {
  12. defines: {
  13. 'PERSPECTIVE_CAMERA': 1,
  14. 'KERNEL_SIZE': 32
  15. },
  16. uniforms: {
  17. 'tNormal': { value: null },
  18. 'tDepth': { value: null },
  19. 'tNoise': { value: null },
  20. 'kernel': { value: null },
  21. 'cameraNear': { value: null },
  22. 'cameraFar': { value: null },
  23. 'resolution': { value: new Vector2() },
  24. 'cameraProjectionMatrix': { value: new Matrix4() },
  25. 'cameraInverseProjectionMatrix': { value: new Matrix4() },
  26. 'kernelRadius': { value: 8 },
  27. 'minDistance': { value: 0.005 },
  28. 'maxDistance': { value: 0.05 },
  29. },
  30. vertexShader: /* glsl */`
  31. varying vec2 vUv;
  32. void main() {
  33. vUv = uv;
  34. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  35. }`,
  36. fragmentShader: /* glsl */`
  37. uniform sampler2D tNormal;
  38. uniform sampler2D tDepth;
  39. uniform sampler2D tNoise;
  40. uniform vec3 kernel[ KERNEL_SIZE ];
  41. uniform vec2 resolution;
  42. uniform float cameraNear;
  43. uniform float cameraFar;
  44. uniform mat4 cameraProjectionMatrix;
  45. uniform mat4 cameraInverseProjectionMatrix;
  46. uniform float kernelRadius;
  47. uniform float minDistance; // avoid artifacts caused by neighbour fragments with minimal depth difference
  48. uniform float maxDistance; // avoid the influence of fragments which are too far away
  49. varying vec2 vUv;
  50. #include <packing>
  51. float getDepth( const in vec2 screenPosition ) {
  52. return texture2D( tDepth, screenPosition ).x;
  53. }
  54. float getLinearDepth( const in vec2 screenPosition ) {
  55. #if PERSPECTIVE_CAMERA == 1
  56. float fragCoordZ = texture2D( tDepth, screenPosition ).x;
  57. float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
  58. return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
  59. #else
  60. return texture2D( tDepth, screenPosition ).x;
  61. #endif
  62. }
  63. float getViewZ( const in float depth ) {
  64. #if PERSPECTIVE_CAMERA == 1
  65. return perspectiveDepthToViewZ( depth, cameraNear, cameraFar );
  66. #else
  67. return orthographicDepthToViewZ( depth, cameraNear, cameraFar );
  68. #endif
  69. }
  70. vec3 getViewPosition( const in vec2 screenPosition, const in float depth, const in float viewZ ) {
  71. float clipW = cameraProjectionMatrix[2][3] * viewZ + cameraProjectionMatrix[3][3];
  72. vec4 clipPosition = vec4( ( vec3( screenPosition, depth ) - 0.5 ) * 2.0, 1.0 );
  73. clipPosition *= clipW; // unprojection.
  74. return ( cameraInverseProjectionMatrix * clipPosition ).xyz;
  75. }
  76. vec3 getViewNormal( const in vec2 screenPosition ) {
  77. return unpackRGBToNormal( texture2D( tNormal, screenPosition ).xyz );
  78. }
  79. void main() {
  80. float depth = getDepth( vUv );
  81. if ( depth == 1.0 ) {
  82. gl_FragColor = vec4( 1.0 ); // don't influence background
  83. } else {
  84. float viewZ = getViewZ( depth );
  85. vec3 viewPosition = getViewPosition( vUv, depth, viewZ );
  86. vec3 viewNormal = getViewNormal( vUv );
  87. vec2 noiseScale = vec2( resolution.x / 4.0, resolution.y / 4.0 );
  88. vec3 random = vec3( texture2D( tNoise, vUv * noiseScale ).r );
  89. // compute matrix used to reorient a kernel vector
  90. vec3 tangent = normalize( random - viewNormal * dot( random, viewNormal ) );
  91. vec3 bitangent = cross( viewNormal, tangent );
  92. mat3 kernelMatrix = mat3( tangent, bitangent, viewNormal );
  93. float occlusion = 0.0;
  94. for ( int i = 0; i < KERNEL_SIZE; i ++ ) {
  95. vec3 sampleVector = kernelMatrix * kernel[ i ]; // reorient sample vector in view space
  96. vec3 samplePoint = viewPosition + ( sampleVector * kernelRadius ); // calculate sample point
  97. vec4 samplePointNDC = cameraProjectionMatrix * vec4( samplePoint, 1.0 ); // project point and calculate NDC
  98. samplePointNDC /= samplePointNDC.w;
  99. vec2 samplePointUv = samplePointNDC.xy * 0.5 + 0.5; // compute uv coordinates
  100. float realDepth = getLinearDepth( samplePointUv ); // get linear depth from depth texture
  101. float sampleDepth = viewZToOrthographicDepth( samplePoint.z, cameraNear, cameraFar ); // compute linear depth of the sample view Z value
  102. float delta = sampleDepth - realDepth;
  103. if ( delta > minDistance && delta < maxDistance ) { // if fragment is before sample point, increase occlusion
  104. occlusion += 1.0;
  105. }
  106. }
  107. occlusion = clamp( occlusion / float( KERNEL_SIZE ), 0.0, 1.0 );
  108. gl_FragColor = vec4( vec3( 1.0 - occlusion ), 1.0 );
  109. }
  110. }`
  111. };
  112. const SSAODepthShader = {
  113. defines: {
  114. 'PERSPECTIVE_CAMERA': 1
  115. },
  116. uniforms: {
  117. 'tDepth': { value: null },
  118. 'cameraNear': { value: null },
  119. 'cameraFar': { value: null },
  120. },
  121. vertexShader:
  122. `varying vec2 vUv;
  123. void main() {
  124. vUv = uv;
  125. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  126. }`,
  127. fragmentShader:
  128. `uniform sampler2D tDepth;
  129. uniform float cameraNear;
  130. uniform float cameraFar;
  131. varying vec2 vUv;
  132. #include <packing>
  133. float getLinearDepth( const in vec2 screenPosition ) {
  134. #if PERSPECTIVE_CAMERA == 1
  135. float fragCoordZ = texture2D( tDepth, screenPosition ).x;
  136. float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
  137. return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
  138. #else
  139. return texture2D( tDepth, screenPosition ).x;
  140. #endif
  141. }
  142. void main() {
  143. float depth = getLinearDepth( vUv );
  144. gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );
  145. }`
  146. };
  147. const SSAOBlurShader = {
  148. uniforms: {
  149. 'tDiffuse': { value: null },
  150. 'resolution': { value: new Vector2() }
  151. },
  152. vertexShader:
  153. `varying vec2 vUv;
  154. void main() {
  155. vUv = uv;
  156. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  157. }`,
  158. fragmentShader:
  159. `uniform sampler2D tDiffuse;
  160. uniform vec2 resolution;
  161. varying vec2 vUv;
  162. void main() {
  163. vec2 texelSize = ( 1.0 / resolution );
  164. float result = 0.0;
  165. for ( int i = - 2; i <= 2; i ++ ) {
  166. for ( int j = - 2; j <= 2; j ++ ) {
  167. vec2 offset = ( vec2( float( i ), float( j ) ) ) * texelSize;
  168. result += texture2D( tDiffuse, vUv + offset ).r;
  169. }
  170. }
  171. gl_FragColor = vec4( vec3( result / ( 5.0 * 5.0 ) ), 1.0 );
  172. }`
  173. };
  174. export { SSAOShader, SSAODepthShader, SSAOBlurShader };