123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 |
- /**
- * @author bhouston / http://exocortex.com
- * @author tschw
- */
- module( "Quaternion" );
- var orders = [ 'XYZ', 'YXZ', 'ZXY', 'ZYX', 'YZX', 'XZY' ];
- var eulerAngles = new THREE.Euler( 0.1, -0.3, 0.25 );
- var qSub = function ( a, b ) {
- var result = new THREE.Quaternion();
- result.copy( a );
- result.x -= b.x;
- result.y -= b.y;
- result.z -= b.z;
- result.w -= b.w;
- return result;
- };
- test( "constructor", function() {
- var a = new THREE.Quaternion();
- ok( a.x == 0, "Passed!" );
- ok( a.y == 0, "Passed!" );
- ok( a.z == 0, "Passed!" );
- ok( a.w == 1, "Passed!" );
- a = new THREE.Quaternion( x, y, z, w );
- ok( a.x === x, "Passed!" );
- ok( a.y === y, "Passed!" );
- ok( a.z === z, "Passed!" );
- ok( a.w === w, "Passed!" );
- });
- test( "copy", function() {
- var a = new THREE.Quaternion( x, y, z, w );
- var b = new THREE.Quaternion().copy( a );
- ok( b.x == x, "Passed!" );
- ok( b.y == y, "Passed!" );
- ok( b.z == z, "Passed!" );
- ok( b.w == w, "Passed!" );
- // ensure that it is a true copy
- a.x = 0;
- a.y = -1;
- a.z = 0;
- a.w = -1;
- ok( b.x == x, "Passed!" );
- ok( b.y == y, "Passed!" );
- });
- test( "set", function() {
- var a = new THREE.Quaternion();
- ok( a.x == 0, "Passed!" );
- ok( a.y == 0, "Passed!" );
- ok( a.z == 0, "Passed!" );
- ok( a.w == 1, "Passed!" );
- a.set( x, y, z, w );
- ok( a.x == x, "Passed!" );
- ok( a.y == y, "Passed!" );
- ok( a.z === z, "Passed!" );
- ok( a.w === w, "Passed!" );
- });
- test( "setFromAxisAngle", function() {
- // TODO: find cases to validate.
- ok( true, "Passed!" );
- var zero = new THREE.Quaternion();
- var a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), 0 );
- ok( a.equals( zero ), "Passed!" );
- a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), 0 );
- ok( a.equals( zero ), "Passed!" );
- a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 0, 0, 1 ), 0 );
- ok( a.equals( zero ), "Passed!" );
- var b1 = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), Math.PI );
- ok( ! a.equals( b1 ), "Passed!" );
- var b2 = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), -Math.PI );
- ok( ! a.equals( b2 ), "Passed!" );
- b1.multiply( b2 );
- ok( a.equals( b1 ), "Passed!" );
- });
- test( "setFromEuler/setFromQuaternion", function() {
- var angles = [ new THREE.Vector3( 1, 0, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 0, 1 ) ];
- // ensure euler conversion to/from Quaternion matches.
- for( var i = 0; i < orders.length; i ++ ) {
- for( var j = 0; j < angles.length; j ++ ) {
- var eulers2 = new THREE.Euler().setFromQuaternion( new THREE.Quaternion().setFromEuler( new THREE.Euler( angles[j].x, angles[j].y, angles[j].z, orders[i] ) ), orders[i] );
- var newAngle = new THREE.Vector3( eulers2.x, eulers2.y, eulers2.z );
- ok( newAngle.distanceTo( angles[j] ) < 0.001, "Passed!" );
- }
- }
- });
- test( "setFromEuler/setFromRotationMatrix", function() {
- // ensure euler conversion for Quaternion matches that of Matrix4
- for( var i = 0; i < orders.length; i ++ ) {
- var q = new THREE.Quaternion().setFromEuler( eulerAngles, orders[i] );
- var m = new THREE.Matrix4().makeRotationFromEuler( eulerAngles, orders[i] );
- var q2 = new THREE.Quaternion().setFromRotationMatrix( m );
- ok( qSub( q, q2 ).length() < 0.001, "Passed!" );
- }
- });
- test( "normalize/length/lengthSq", function() {
- var a = new THREE.Quaternion( x, y, z, w );
- var b = new THREE.Quaternion( -x, -y, -z, -w );
- ok( a.length() != 1, "Passed!");
- ok( a.lengthSq() != 1, "Passed!");
- a.normalize();
- ok( a.length() == 1, "Passed!");
- ok( a.lengthSq() == 1, "Passed!");
- a.set( 0, 0, 0, 0 );
- ok( a.lengthSq() == 0, "Passed!");
- ok( a.length() == 0, "Passed!");
- a.normalize();
- ok( a.lengthSq() == 1, "Passed!");
- ok( a.length() == 1, "Passed!");
- });
- test( "inverse/conjugate", function() {
- var a = new THREE.Quaternion( x, y, z, w );
- // TODO: add better validation here.
- var b = a.clone().conjugate();
- ok( a.x == -b.x, "Passed!" );
- ok( a.y == -b.y, "Passed!" );
- ok( a.z == -b.z, "Passed!" );
- ok( a.w == b.w, "Passed!" );
- });
- test( "multiplyQuaternions/multiply", function() {
- var angles = [ new THREE.Euler( 1, 0, 0 ), new THREE.Euler( 0, 1, 0 ), new THREE.Euler( 0, 0, 1 ) ];
- var q1 = new THREE.Quaternion().setFromEuler( angles[0], "XYZ" );
- var q2 = new THREE.Quaternion().setFromEuler( angles[1], "XYZ" );
- var q3 = new THREE.Quaternion().setFromEuler( angles[2], "XYZ" );
- var q = new THREE.Quaternion().multiplyQuaternions( q1, q2 ).multiply( q3 );
- var m1 = new THREE.Matrix4().makeRotationFromEuler( angles[0], "XYZ" );
- var m2 = new THREE.Matrix4().makeRotationFromEuler( angles[1], "XYZ" );
- var m3 = new THREE.Matrix4().makeRotationFromEuler( angles[2], "XYZ" );
- var m = new THREE.Matrix4().multiplyMatrices( m1, m2 ).multiply( m3 );
- var qFromM = new THREE.Quaternion().setFromRotationMatrix( m );
- ok( qSub( q, qFromM ).length() < 0.001, "Passed!" );
- });
- test( "multiplyVector3", function() {
- var angles = [ new THREE.Euler( 1, 0, 0 ), new THREE.Euler( 0, 1, 0 ), new THREE.Euler( 0, 0, 1 ) ];
- // ensure euler conversion for Quaternion matches that of Matrix4
- for( var i = 0; i < orders.length; i ++ ) {
- for( var j = 0; j < angles.length; j ++ ) {
- var q = new THREE.Quaternion().setFromEuler( angles[j], orders[i] );
- var m = new THREE.Matrix4().makeRotationFromEuler( angles[j], orders[i] );
- var v0 = new THREE.Vector3(1, 0, 0);
- var qv = v0.clone().applyQuaternion( q );
- var mv = v0.clone().applyMatrix4( m );
- ok( qv.distanceTo( mv ) < 0.001, "Passed!" );
- }
- }
- });
- test( "equals", function() {
- var a = new THREE.Quaternion( x, y, z, w );
- var b = new THREE.Quaternion( -x, -y, -z, -w );
- ok( a.x != b.x, "Passed!" );
- ok( a.y != b.y, "Passed!" );
- ok( ! a.equals( b ), "Passed!" );
- ok( ! b.equals( a ), "Passed!" );
- a.copy( b );
- ok( a.x == b.x, "Passed!" );
- ok( a.y == b.y, "Passed!" );
- ok( a.equals( b ), "Passed!" );
- ok( b.equals( a ), "Passed!" );
- });
- function doSlerpObject( aArr, bArr, t ) {
- var a = new THREE.Quaternion().fromArray( aArr ),
- b = new THREE.Quaternion().fromArray( bArr ),
- c = new THREE.Quaternion().fromArray( aArr );
- c.slerp( b, t );
- return {
- equals: function( x, y, z, w, maxError ) {
- if ( maxError === undefined ) maxError = Number.EPSILON;
- return Math.abs( x - c.x ) <= maxError &&
- Math.abs( y - c.y ) <= maxError &&
- Math.abs( z - c.z ) <= maxError &&
- Math.abs( w - c.w ) <= maxError;
- },
- length: c.length(),
- dotA: c.dot( a ),
- dotB: c.dot( b )
- };
- };
- function doSlerpArray( a, b, t ) {
- var result = [ 0, 0, 0, 0 ];
- THREE.Quaternion.slerpFlat( result, 0, a, 0, b, 0, t );
- function arrDot( a, b ) {
- return a[ 0 ] * b[ 0 ] + a[ 1 ] * b[ 1 ] +
- a[ 2 ] * b[ 2 ] + a[ 3 ] * b[ 3 ];
- }
- return {
- equals: function( x, y, z, w, maxError ) {
- if ( maxError === undefined ) maxError = Number.EPSILON;
- return Math.abs( x - result[ 0 ] ) <= maxError &&
- Math.abs( y - result[ 1 ] ) <= maxError &&
- Math.abs( z - result[ 2 ] ) <= maxError &&
- Math.abs( w - result[ 3 ] ) <= maxError;
- },
- length: Math.sqrt( arrDot( result, result ) ),
- dotA: arrDot( result, a ),
- dotB: arrDot( result, b )
- };
- }
- function slerpTestSkeleton( doSlerp, maxError ) {
- var a, b, result;
- a = [
- 0.6753410084407496,
- 0.4087830051091744,
- 0.32856700410659473,
- 0.5185120064806223,
- ];
- b = [
- 0.6602792107657797,
- 0.43647413932562285,
- 0.35119011210236006,
- 0.5001871596632682
- ];
- var maxNormError = 0;
- function isNormal( result ) {
- var normError = Math.abs( 1 - result.length );
- maxNormError = Math.max( maxNormError, normError );
- return normError <= maxError;
- }
- result = doSlerp( a, b, 0 );
- ok( result.equals(
- a[ 0 ], a[ 1 ], a[ 2 ], a[ 3 ], 0 ), "Exactly A @ t = 0" );
- result = doSlerp( a, b, 1 );
- ok( result.equals(
- b[ 0 ], b[ 1 ], b[ 2 ], b[ 3 ], 0 ), "Exactly B @ t = 1" );
- result = doSlerp( a, b, 0.5 );
- ok( Math.abs( result.dotA - result.dotB ) <= Number.EPSILON, "Symmetry at 0.5" );
- ok( isNormal( result ), "Approximately normal (at 0.5)" );
- result = doSlerp( a, b, 0.25 );
- ok( result.dotA > result.dotB, "Interpolating at 0.25" );
- ok( isNormal( result ), "Approximately normal (at 0.25)" );
- result = doSlerp( a, b, 0.75 );
- ok( result.dotA < result.dotB, "Interpolating at 0.75" );
- ok( isNormal( result ), "Approximately normal (at 0.75)" );
- var D = Math.SQRT1_2;
- result = doSlerp( [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], 0.5 );
- ok( result.equals( D, 0, D, 0 ), "X/Z diagonal from axes" );
- ok( isNormal( result ), "Approximately normal (X/Z diagonal)" );
- result = doSlerp( [ 0, D, 0, D ], [ 0, -D, 0, D ], 0.5 );
- ok( result.equals( 0, 0, 0, 1 ), "W-Unit from diagonals" );
- ok( isNormal( result ), "Approximately normal (W-Unit)" );
- }
- test( "slerp", function() {
- slerpTestSkeleton( doSlerpObject, Number.EPSILON );
- } );
- test( "slerpFlat", function() {
- slerpTestSkeleton( doSlerpArray, Number.EPSILON );
- } );
|