Quaternion.html 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. <!DOCTYPE html>
  2. <html lang="zh">
  3. <head>
  4. <meta charset="utf-8" />
  5. <base href="../../../" />
  6. <script src="page.js"></script>
  7. <link type="text/css" rel="stylesheet" href="page.css" />
  8. </head>
  9. <body>
  10. <h1>四元数([name])</h1>
  11. <p class="desc">
  12. 该类实现了 [link:http://en.wikipedia.org/wiki/Quaternion quaternion] 。<br/>
  13. 四元数在three.js中用于表示 [link:https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation rotation] (旋转)。
  14. </p>
  15. <h2>代码示例</h2>
  16. <code>
  17. const quaternion = new THREE.Quaternion();
  18. quaternion.setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), Math.PI / 2 );
  19. const vector = new THREE.Vector3( 1, 0, 0 );
  20. vector.applyQuaternion( quaternion );
  21. </code>
  22. <h2>构造函数</h2>
  23. <h3>[name]( [param:Float x], [param:Float y], [param:Float z], [param:Float w] )</h3>
  24. <p>
  25. [page:Float x] - x 坐标<br />
  26. [page:Float y] - y 坐标<br />
  27. [page:Float z] - z 坐标<br />
  28. [page:Float w] - w 坐标
  29. </p>
  30. <h2>属性</h2>
  31. <h3>[property:Float x]</h3>
  32. <h3>[property:Float y]</h3>
  33. <h3>[property:Float z]</h3>
  34. <h3>[property:Float w]</h3>
  35. <h2>方法</h2>
  36. <h3>[method:Float angleTo]( [param:Quaternion q] )</h3>
  37. <p>
  38. 以弧度返回该四元数与四元数 [page:Quaternion q] 之间的夹角。
  39. </p>
  40. <h3>[method:Quaternion clone]()</h3>
  41. <p>
  42. 创建一个与该四元数具有相同[page:.x x]、[page:.y y]、[page:.z z]和[page:.w w]
  43. 属性的四元数。
  44. </p>
  45. <h3>[method:Quaternion conjugate]()</h3>
  46. <p>
  47. 返回该四元数的旋转共轭。
  48. 四元数的共轭表示的是,围绕旋转轴在相反方向上的相同旋转。
  49. </p>
  50. <h3>[method:Quaternion copy]( [param:Quaternion q] )</h3>
  51. <p>
  52. 复制四元数 [page:Quaternion q] 的 [page:.x x]、[page:.y y]、[page:.z z] 和 [page:.w w]
  53. 属性到该四元数中。
  54. </p>
  55. <h3>[method:Boolean equals]( [param:Quaternion v] )</h3>
  56. <p>
  57. [page:Quaternion v] - 用于进行比较的四元数。<br /><br />
  58. 将四元数 [page:Quaternion v] 的 [page:.x x]、 [page:.y y]、 [page:.z z] 和 [page:.w w] 的属性
  59. 与当前四元数的对应属性相比较,以确定它们是否表示相同的旋转。
  60. </p>
  61. <h3>[method:Float dot]( [param:Quaternion v] )</h3>
  62. <p>
  63. 计算四元数 [page:Quaternion v] 与当前四元数的[link:https://en.wikipedia.org/wiki/Dot_product dot product](点积)。
  64. </p>
  65. <h3>[method:Quaternion fromArray]( [param:Array array], [param:Integer offset] )</h3>
  66. <p>
  67. [page:Array array] - 用于构造四元数的形如(x, y, z, w)的数组。<br />
  68. [page:Integer offset] - (可选)数组的偏移量。(译者注:使用数组中从第offset元素算起的四个元素)<br /><br />
  69. 从一个数组来设置四元数的 [page:.x x]、 [page:.y y]、[page:.z z] 和 [page:.w w] 的属性。
  70. </p>
  71. <h3>[method:Quaternion identity]()</h3>
  72. <p>
  73. 设置该四元数为 identity 四元数,即表示“不旋转”的四元数。
  74. </p>
  75. <h3>[method:Quaternion invert]()</h3>
  76. <p>
  77. 翻转该四元数 —— 计算 [page:.conjugate conjugate] 。假定该四元数具有单位长度。
  78. </p>
  79. <h3>[method:Float length]()</h3>
  80. <p>计算四元数的 [link:https://en.wikipedia.org/wiki/Euclidean_distance Euclidean length]
  81. (欧几里得长度,直线长度),视为一个四维向量。</p>
  82. <h3>[method:Float lengthSq]()</h3>
  83. <p>
  84. 计算四元数 [link:https://en.wikipedia.org/wiki/Euclidean_distance Euclidean length]
  85. (欧几里得长度,直线长度)的平方,视为一个四维向量。
  86. 如果要比较两个四元数的长度,这可能会十分有用,
  87. 因为这比 [page:.length length]() 的效率稍高一些。
  88. </p>
  89. <h3>[method:Quaternion normalize]()</h3>
  90. <p>
  91. [link:https://en.wikipedia.org/wiki/Normalized_vector Normalizes](归一化)四元数 ——
  92. 即计算与该四元数具有相同旋转、但长度为*1*的四元数。
  93. </p>
  94. <h3>[method:Quaternion multiply]( [param:Quaternion q] )</h3>
  95. <p>将该四元数与[page:Quaternion q]相乘。</p>
  96. <h3>[method:Quaternion multiplyQuaternions]( [param:Quaternion a], [param:Quaternion b] )</h3>
  97. <p>
  98. 将该四元数设为 [page:Quaternion a] x [page:Quaternion b] 。<br />
  99. 改编自 [link:http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm here] 所概述的方法。
  100. </p>
  101. <h3>[method:Quaternion premultiply]( [param:Quaternion q] )</h3>
  102. <p>Pre-multiplies this quaternion by [page:Quaternion q].</p>
  103. <h3>[method:Quaternion rotateTowards]( [param:Quaternion q], [param:Float step] )</h3>
  104. <p>
  105. [page:Quaternion q] - The target quaternion.<br />
  106. [page:Float step] - The angular step in radians.<br /><br />
  107. Rotates this quaternion by a given angular step to the defined quaternion *q*.
  108. The method ensures that the final quaternion will not overshoot *q*.
  109. </p>
  110. <h3>[method:Quaternion slerp]( [param:Quaternion qb], [param:Float t] )</h3>
  111. <p>
  112. [page:Quaternion qb] - The other quaternion rotation<br />
  113. [page:Float t] - interpolation factor in the closed interval [0, 1].<br /><br />
  114. Handles the spherical linear interpolation between quaternions. [page:Float t] represents the
  115. amount of rotation between this quaternion (where [page:Float t] is 0) and [page:Quaternion qb] (where
  116. [page:Float t] is 1). This quaternion is set to the result. Also see the static version of the
  117. *slerp* below.
  118. <code>
  119. // rotate a mesh towards a target quaternion
  120. mesh.quaternion.slerp( endQuaternion, 0.01 );
  121. </code>
  122. </p>
  123. <h3>[method:this slerpQuaternions]( [param:Quaternion qa], [param:Quaternion qb], [param:Float t] )</h3>
  124. <p>Performs a spherical linear interpolation between the given quaternions and stores the result in this quaternion.</p>
  125. <h3>[method:Quaternion set]( [param:Float x], [param:Float y], [param:Float z], [param:Float w] )</h3>
  126. <p>设置该四元数的 [page:.x x]、[page:.y y]、[page:.z z]和[page:.w w]属性。</p>
  127. <h3>[method:Quaternion setFromAxisAngle]( [param:Vector3 axis], [param:Float angle] )</h3>
  128. <p>
  129. 从由 [page:Vector3 axis](轴) 和 [page:Float angle](角度)所给定的旋转来设置该四元数。<br />
  130. 改编自 [link:http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm here] 所述的方法。<br />
  131. 假定*Axis*已被归一化,*angle*以弧度来表示。
  132. </p>
  133. <h3>[method:Quaternion setFromEuler]( [param:Euler euler] )</h3>
  134. <p>从由 [page:Euler] 角所给定的旋转来设置该四元数。</p>
  135. <h3>[method:Quaternion setFromRotationMatrix]( [param:Matrix4 m] )</h3>
  136. <p>
  137. 从[page:Matrix4 m]的旋转分量中来设置该四元数。<br />
  138. 改编自 [link:http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm here] 所概述的方法。
  139. </p>
  140. <h3>[method:Quaternion setFromUnitVectors]( [param:Vector3 vFrom], [param:Vector3 vTo] )</h3>
  141. <p>
  142. Sets this quaternion to the rotation required to rotate direction vector [page:Vector3 vFrom] to
  143. direction vector [page:Vector3 vTo].<br />
  144. Adapted from the method [link:http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors here].<br />
  145. [page:Vector3 vFrom] and [page:Vector3 vTo] are assumed to be normalized.
  146. </p>
  147. <h3>[method:Array toArray]( [param:Array array], [param:Integer offset] )</h3>
  148. <p>
  149. [page:Array array] - (可选)存储该四元数的数组。若未指定该参数,则将创建一个新数组。<br/>
  150. [page:Integer offset] - (可选)若指定了该值,结果将会被拷贝到该
  151. [page:Array]。<br /><br />
  152. 在形如[x, y, z, w]的数组中,返回四元数中的数字元素。
  153. </p>
  154. <h3>[method:this fromBufferAttribute]( [param:BufferAttribute attribute], [param:Integer index] )</h3>
  155. <p>
  156. [page:BufferAttribute attribute] - 源 attribute。<br />
  157. [page:Integer index] - attribute 中的索引。<br /><br />
  158. 从 [page:BufferAttribute attribute] 中设置该四元数的[page:.x x]、 [page:.y y]、 [page:.z z]、 [page:.w w]属性。
  159. </p>
  160. <h2>静态方法</h2>
  161. <h3>[method:null slerpFlat]( [param:Array dst], [param:Integer dstOffset], [param:Array src0], [param:Integer srcOffset0], [param:Array src1], [param:Integer srcOffset1], [param:Float t] )</h3>
  162. <p>
  163. [page:Array dst] - The output array.<br />
  164. [page:Integer dstOffset] - An offset into the output array.<br />
  165. [page:Array src0] - The source array of the starting quaternion.<br />
  166. [page:Integer srcOffset0] - An offset into the array *src0*.<br />
  167. [page:Array src1] - The source array of the target quatnerion.<br />
  168. [page:Integer srcOffset1] - An offset into the array *src1*.<br />
  169. [page:Float t] - Normalized interpolation factor (between 0 and 1).<br /><br />
  170. </p>
  171. <p>
  172. Like the static *slerp* method above, but operates directly on flat arrays of numbers.
  173. </p>
  174. <!-- Note: Do not add non-static methods to the bottom of this page. Put them above the <h2>Static Methods</h2> -->
  175. <h2>源码</h2>
  176. <p>
  177. [link:https://github.com/mrdoob/three.js/blob/master/src/[path].js src/[path].js]
  178. </p>
  179. </body>
  180. </html>