2
0

NURBSUtils.js 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. ( function () {
  2. /**
  3. * NURBS utils
  4. *
  5. * See NURBSCurve and NURBSSurface.
  6. **/
  7. /**************************************************************
  8. * NURBS Utils
  9. **************************************************************/
  10. class NURBSUtils {
  11. /*
  12. Finds knot vector span.
  13. p : degree
  14. u : parametric value
  15. U : knot vector
  16. returns the span
  17. */
  18. static findSpan( p, u, U ) {
  19. const n = U.length - p - 1;
  20. if ( u >= U[ n ] ) {
  21. return n - 1;
  22. }
  23. if ( u <= U[ p ] ) {
  24. return p;
  25. }
  26. let low = p;
  27. let high = n;
  28. let mid = Math.floor( ( low + high ) / 2 );
  29. while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
  30. if ( u < U[ mid ] ) {
  31. high = mid;
  32. } else {
  33. low = mid;
  34. }
  35. mid = Math.floor( ( low + high ) / 2 );
  36. }
  37. return mid;
  38. }
  39. /*
  40. Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
  41. span : span in which u lies
  42. u : parametric point
  43. p : degree
  44. U : knot vector
  45. returns array[p+1] with basis functions values.
  46. */
  47. static calcBasisFunctions( span, u, p, U ) {
  48. const N = [];
  49. const left = [];
  50. const right = [];
  51. N[ 0 ] = 1.0;
  52. for ( let j = 1; j <= p; ++ j ) {
  53. left[ j ] = u - U[ span + 1 - j ];
  54. right[ j ] = U[ span + j ] - u;
  55. let saved = 0.0;
  56. for ( let r = 0; r < j; ++ r ) {
  57. const rv = right[ r + 1 ];
  58. const lv = left[ j - r ];
  59. const temp = N[ r ] / ( rv + lv );
  60. N[ r ] = saved + rv * temp;
  61. saved = lv * temp;
  62. }
  63. N[ j ] = saved;
  64. }
  65. return N;
  66. }
  67. /*
  68. Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
  69. p : degree of B-Spline
  70. U : knot vector
  71. P : control points (x, y, z, w)
  72. u : parametric point
  73. returns point for given u
  74. */
  75. static calcBSplinePoint( p, U, P, u ) {
  76. const span = this.findSpan( p, u, U );
  77. const N = this.calcBasisFunctions( span, u, p, U );
  78. const C = new THREE.Vector4( 0, 0, 0, 0 );
  79. for ( let j = 0; j <= p; ++ j ) {
  80. const point = P[ span - p + j ];
  81. const Nj = N[ j ];
  82. const wNj = point.w * Nj;
  83. C.x += point.x * wNj;
  84. C.y += point.y * wNj;
  85. C.z += point.z * wNj;
  86. C.w += point.w * Nj;
  87. }
  88. return C;
  89. }
  90. /*
  91. Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
  92. span : span in which u lies
  93. u : parametric point
  94. p : degree
  95. n : number of derivatives to calculate
  96. U : knot vector
  97. returns array[n+1][p+1] with basis functions derivatives
  98. */
  99. static calcBasisFunctionDerivatives( span, u, p, n, U ) {
  100. const zeroArr = [];
  101. for ( let i = 0; i <= p; ++ i ) zeroArr[ i ] = 0.0;
  102. const ders = [];
  103. for ( let i = 0; i <= n; ++ i ) ders[ i ] = zeroArr.slice( 0 );
  104. const ndu = [];
  105. for ( let i = 0; i <= p; ++ i ) ndu[ i ] = zeroArr.slice( 0 );
  106. ndu[ 0 ][ 0 ] = 1.0;
  107. const left = zeroArr.slice( 0 );
  108. const right = zeroArr.slice( 0 );
  109. for ( let j = 1; j <= p; ++ j ) {
  110. left[ j ] = u - U[ span + 1 - j ];
  111. right[ j ] = U[ span + j ] - u;
  112. let saved = 0.0;
  113. for ( let r = 0; r < j; ++ r ) {
  114. const rv = right[ r + 1 ];
  115. const lv = left[ j - r ];
  116. ndu[ j ][ r ] = rv + lv;
  117. const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
  118. ndu[ r ][ j ] = saved + rv * temp;
  119. saved = lv * temp;
  120. }
  121. ndu[ j ][ j ] = saved;
  122. }
  123. for ( let j = 0; j <= p; ++ j ) {
  124. ders[ 0 ][ j ] = ndu[ j ][ p ];
  125. }
  126. for ( let r = 0; r <= p; ++ r ) {
  127. let s1 = 0;
  128. let s2 = 1;
  129. const a = [];
  130. for ( let i = 0; i <= p; ++ i ) {
  131. a[ i ] = zeroArr.slice( 0 );
  132. }
  133. a[ 0 ][ 0 ] = 1.0;
  134. for ( let k = 1; k <= n; ++ k ) {
  135. let d = 0.0;
  136. const rk = r - k;
  137. const pk = p - k;
  138. if ( r >= k ) {
  139. a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
  140. d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
  141. }
  142. const j1 = rk >= - 1 ? 1 : - rk;
  143. const j2 = r - 1 <= pk ? k - 1 : p - r;
  144. for ( let j = j1; j <= j2; ++ j ) {
  145. a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
  146. d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
  147. }
  148. if ( r <= pk ) {
  149. a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
  150. d += a[ s2 ][ k ] * ndu[ r ][ pk ];
  151. }
  152. ders[ k ][ r ] = d;
  153. const j = s1;
  154. s1 = s2;
  155. s2 = j;
  156. }
  157. }
  158. let r = p;
  159. for ( let k = 1; k <= n; ++ k ) {
  160. for ( let j = 0; j <= p; ++ j ) {
  161. ders[ k ][ j ] *= r;
  162. }
  163. r *= p - k;
  164. }
  165. return ders;
  166. }
  167. /*
  168. Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
  169. p : degree
  170. U : knot vector
  171. P : control points
  172. u : Parametric points
  173. nd : number of derivatives
  174. returns array[d+1] with derivatives
  175. */
  176. static calcBSplineDerivatives( p, U, P, u, nd ) {
  177. const du = nd < p ? nd : p;
  178. const CK = [];
  179. const span = this.findSpan( p, u, U );
  180. const nders = this.calcBasisFunctionDerivatives( span, u, p, du, U );
  181. const Pw = [];
  182. for ( let i = 0; i < P.length; ++ i ) {
  183. const point = P[ i ].clone();
  184. const w = point.w;
  185. point.x *= w;
  186. point.y *= w;
  187. point.z *= w;
  188. Pw[ i ] = point;
  189. }
  190. for ( let k = 0; k <= du; ++ k ) {
  191. const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
  192. for ( let j = 1; j <= p; ++ j ) {
  193. point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
  194. }
  195. CK[ k ] = point;
  196. }
  197. for ( let k = du + 1; k <= nd + 1; ++ k ) {
  198. CK[ k ] = new THREE.Vector4( 0, 0, 0 );
  199. }
  200. return CK;
  201. }
  202. /*
  203. Calculate "K over I"
  204. returns k!/(i!(k-i)!)
  205. */
  206. static calcKoverI( k, i ) {
  207. let nom = 1;
  208. for ( let j = 2; j <= k; ++ j ) {
  209. nom *= j;
  210. }
  211. let denom = 1;
  212. for ( let j = 2; j <= i; ++ j ) {
  213. denom *= j;
  214. }
  215. for ( let j = 2; j <= k - i; ++ j ) {
  216. denom *= j;
  217. }
  218. return nom / denom;
  219. }
  220. /*
  221. Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
  222. Pders : result of function calcBSplineDerivatives
  223. returns array with derivatives for rational curve.
  224. */
  225. static calcRationalCurveDerivatives( Pders ) {
  226. const nd = Pders.length;
  227. const Aders = [];
  228. const wders = [];
  229. for ( let i = 0; i < nd; ++ i ) {
  230. const point = Pders[ i ];
  231. Aders[ i ] = new THREE.Vector3( point.x, point.y, point.z );
  232. wders[ i ] = point.w;
  233. }
  234. const CK = [];
  235. for ( let k = 0; k < nd; ++ k ) {
  236. const v = Aders[ k ].clone();
  237. for ( let i = 1; i <= k; ++ i ) {
  238. v.sub( CK[ k - i ].clone().multiplyScalar( this.calcKoverI( k, i ) * wders[ i ] ) );
  239. }
  240. CK[ k ] = v.divideScalar( wders[ 0 ] );
  241. }
  242. return CK;
  243. }
  244. /*
  245. Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
  246. p : degree
  247. U : knot vector
  248. P : control points in homogeneous space
  249. u : parametric points
  250. nd : number of derivatives
  251. returns array with derivatives.
  252. */
  253. static calcNURBSDerivatives( p, U, P, u, nd ) {
  254. const Pders = this.calcBSplineDerivatives( p, U, P, u, nd );
  255. return this.calcRationalCurveDerivatives( Pders );
  256. }
  257. /*
  258. Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
  259. p1, p2 : degrees of B-Spline surface
  260. U1, U2 : knot vectors
  261. P : control points (x, y, z, w)
  262. u, v : parametric values
  263. returns point for given (u, v)
  264. */
  265. static calcSurfacePoint( p, q, U, V, P, u, v, target ) {
  266. const uspan = this.findSpan( p, u, U );
  267. const vspan = this.findSpan( q, v, V );
  268. const Nu = this.calcBasisFunctions( uspan, u, p, U );
  269. const Nv = this.calcBasisFunctions( vspan, v, q, V );
  270. const temp = [];
  271. for ( let l = 0; l <= q; ++ l ) {
  272. temp[ l ] = new THREE.Vector4( 0, 0, 0, 0 );
  273. for ( let k = 0; k <= p; ++ k ) {
  274. const point = P[ uspan - p + k ][ vspan - q + l ].clone();
  275. const w = point.w;
  276. point.x *= w;
  277. point.y *= w;
  278. point.z *= w;
  279. temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
  280. }
  281. }
  282. const Sw = new THREE.Vector4( 0, 0, 0, 0 );
  283. for ( let l = 0; l <= q; ++ l ) {
  284. Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
  285. }
  286. Sw.divideScalar( Sw.w );
  287. target.set( Sw.x, Sw.y, Sw.z );
  288. }
  289. }
  290. THREE.NURBSUtils = NURBSUtils;
  291. } )();