-- This demo renders four examples of mesh drawing: -- A plain mesh (one triangle, white) -- A mesh with a vertex map (a cube, magenta) -- An instanced mesh with its size controlled by gl_InstanceID and an equation (512 cubes animated, cyan) -- An instanced mesh with its size controlled by an attached attribute (512 cubes with random sizes, yellow) local fragmentShader = require("shader") local mesh1, mesh2, mesh4 local mesh4Instance local mesh1Program, mesh3Program, mesh4Program local gridSize = 8 local gridSizeCubed = gridSize*gridSize*gridSize -- Call this function with a string containing a glsl function preTransform() -- Which maps world space coordinates to world space coordinates. local function makeShader(prefix) return lovr.graphics.newShader(prefix .. [[ out vec3 lightDirection; out vec3 normalDirection; vec3 lightPosition = vec3(10, 10, 3); vec4 position(mat4 projection, mat4 transform, vec4 _vertex) { vec4 vertex = preTransform(_vertex); vec4 vVertex = transform * vertex; vec4 vLight = lovrView * vec4(lightPosition, 1.); lightDirection = normalize(vec3(vLight - vVertex)); normalDirection = normalize(lovrNormalMatrix * lovrNormal); return projection * transform * vertex; } ]], fragmentShader) end -- This "standard" program is the same as the standard light shader from the other examples-- it does nothing. local mesh1Program = makeShader("vec4 preTransform(vec4 v) { return v; }") local animate = 0 function lovr.load() lovr.graphics.setCullingEnabled(true) -- mesh1Program() mesh1 = lovr.graphics.newMesh({{ 'lovrPosition', 'float', 3 }, { 'lovrNormal', 'float', 3 }}, 3, 'triangles') mesh1:setVertices({{0,0,0, 0,0,1}, {1,0,0, 0,0,1}, {0,1,0, 0,0,1}}) -- A triangle mesh2 = lovr.graphics.newMesh({{ 'lovrPosition', 'float', 3 }, { 'lovrNormal', 'float', 3 }}, 24, 'triangles') local mesh2Vertices = { -- Coordinates for mesh 2 (a cube) {0,0,0, 0,0,-1}, -- Face front {0,1,0, 0,0,-1}, {1,1,0, 0,0,-1}, {1,0,0, 0,0,-1}, {1,1,0, 0,1,0}, -- Face top {0,1,0, 0,1,0}, {0,1,1, 0,1,0}, {1,1,1, 0,1,0}, {1,0,0, 1,0,0}, -- Face right {1,1,0, 1,0,0}, {1,1,1, 1,0,0}, {1,0,1, 1,0,0}, {0,0,0, -1,0,0}, -- Face left {0,0,1, -1,0,0}, {0,1,1, -1,0,0}, {0,1,0, -1,0,0}, {1,1,1, 0,0,1}, -- Face back {0,1,1, 0,0,1}, {0,0,1, 0,0,1}, {1,0,1, 0,0,1}, {0,0,0, 0,-1,0}, -- Face bottom {1,0,0, 0,-1,0}, {1,0,1, 0,-1,0}, {0,0,1, 0,-1,0} } -- This cube covers the space 0..1, so it's centered at (0.5, 0.5, 0.5). -- Edit the first three coordinates of each vertex to center it at (0,0,0): for _, v in ipairs(mesh2Vertices) do for i=1,3 do v[i] = v[i] - 0.5 end end mesh2:setVertices(mesh2Vertices) local mesh2Indexes = { -- Indexes for mesh 2 1, 2, 3, 1, 3, 4, -- Face front 5, 6, 7, 5, 7, 8, -- Face top 9, 10, 11, 9, 11, 12, -- Face right 13, 14, 15, 13, 15, 16, -- Face left 17, 18, 19, 17, 19, 20, -- Face back 21, 22, 23, 21, 23, 24, -- Face bottom } mesh2:setVertexMap(mesh2Indexes) mesh3Program = makeShader([[ uniform int gridSize; uniform float animate; vec4 preTransform(vec4 v) { int x = gl_InstanceID % gridSize; int y = (gl_InstanceID / gridSize) % gridSize; int z = (gl_InstanceID / gridSize) / gridSize; float cubeSize = (sin(x + y + z + animate) + 1) / 2; return v * vec4(cubeSize,cubeSize,cubeSize,1) + vec4(x,y,z,0) - vec4(gridSize, gridSize, gridSize, 0)/2; } ]]) mesh3Program:send("gridSize", gridSize) mesh4Program = makeShader([[ uniform int gridSize; in float cubeSize; vec4 preTransform(vec4 v) { int x = gl_InstanceID % gridSize; int y = (gl_InstanceID / gridSize) % gridSize; int z = (gl_InstanceID / gridSize) / gridSize; return v * vec4(cubeSize,cubeSize,cubeSize,1) + vec4(x,y,z,0) - vec4(gridSize, gridSize, gridSize, 0)/2; } ]]) mesh4Program:send("gridSize", gridSize) mesh4 = lovr.graphics.newMesh({}, 24, 'triangles') mesh4Instance = lovr.graphics.newMesh({{'cubeSize', 'float', 1}}, gridSizeCubed, 'points') local mesh4Vertices = {} for i=1,gridSizeCubed do table.insert(mesh4Vertices, {math.random()}) end mesh4Instance:setVertices(mesh4Vertices) mesh4:setVertexMap(mesh2Indexes) mesh4:attachAttributes(mesh2) mesh4:attachAttributes(mesh4Instance, 1) end function lovr.update(dt) animate = animate + dt/math.pi*2 end function lovr.draw(eye) lovr.graphics.setShader(mesh1Program) lovr.graphics.push() lovr.graphics.setColor(1,1,1) lovr.graphics.translate(0, 0, -2) mesh1:draw(0,0,0) lovr.graphics.pop() lovr.graphics.push() lovr.graphics.setColor(1,0,1) lovr.graphics.rotate(1 * math.pi/2, 0, 1, 0) lovr.graphics.translate(0, 0, -2) mesh2:draw(0,0,0) lovr.graphics.pop() lovr.graphics.setShader(mesh3Program) lovr.graphics.setColor(0,1,1) lovr.graphics.push() lovr.graphics.rotate(2 * math.pi/2, 0, 1, 0) lovr.graphics.translate(0, 0, -2) lovr.graphics.scale(1/gridSize) mesh3Program:send("animate", animate) mesh2:drawInstanced(gridSizeCubed, 0,0,0) lovr.graphics.pop() lovr.graphics.setShader(mesh4Program) lovr.graphics.setColor(1,1,0) lovr.graphics.push() lovr.graphics.rotate(3 * math.pi/2, 0, 1, 0) lovr.graphics.translate(0, 0, -2) lovr.graphics.scale(1/gridSize) mesh4:drawInstanced(gridSizeCubed, 0,0,0) lovr.graphics.pop() end