123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- -- This demo renders a scene to a canvas, then renders the canvas to screen filtered through a shader.
- -- Set this to false to see the scene with no postprocessing.
- local useCanvas = true
- -- A shader program consists of a vertex shader (which describes how to transform polygons)
- -- and a fragment shader (which describes how to color pixels).
- -- For a full-screen shader, the vertex shader should just pass the polygon through unaltered.
- -- This is the same as the "default" full-screen shader used by lovr.graphics.plane:
- local screenShaderVertex = [[
- vec4 position(mat4 projection, mat4 transform, vec4 vertex) {
- return vertex;
- }
- ]]
- -- For the fragment shader: We are going to create a separable gaussian blur.
- -- A "separable" blur means we first blur horizontally, then blur vertically to get a 2D blur.
- local screenShaderFragment = [[
- // This one-dimensional blur filter samples five points and averages them by different amounts.
- // Weights and offsets taken from http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
- // The weights for the center, one-point-out, and two-point-out samples
- #define WEIGHT0 0.2270270270
- #define WEIGHT1 0.3162162162
- #define WEIGHT2 0.0702702703
- // The distances-from-center for the samples
- #define OFFSET1 1.3846153846
- #define OFFSET2 3.2307692308
- // UVs are sampled from a texture over the range 0..1.
- // This uniform is set outside the shader so we know what UV distance "one pixel" is.
- uniform vec2 resolution;
- // This uniform will be set every draw to determine whether we are sampling horizontally or vertically.
- uniform vec2 direction;
- // lovr's shader architecture will automatically supply a main(), which will call this color() function
- vec4 color(vec4 graphicsColor, sampler2D image, vec2 uv) {
- vec2 pixelOff = direction / resolution;
- vec4 color = vec4(0.0);
- color += texture(image, uv) * WEIGHT0;
- color += texture(image, uv + pixelOff * OFFSET1) * WEIGHT1;
- color += texture(image, uv - pixelOff * OFFSET1) * WEIGHT1;
- color += texture(image, uv + pixelOff * OFFSET2) * WEIGHT2;
- color += texture(image, uv - pixelOff * OFFSET2) * WEIGHT2;
- return color;
- }
- ]]
- -- The vertex and fragment shaders will be combined together into a shader program
- local screenShader
- -- Image of an eyechart
- local eyechart
- -- This table will contain two canvases we will use as scratch space
- local tempCanvas
- function lovr.load()
- -- Load the eyechart image
- -- Source: https://www.publicdomainpictures.net/view-image.php?image=244244&picture=eye-chart-test-vintage
- -- Creative Commons 0 / Public Domain license
- local texture = lovr.graphics.newTexture('eye-chart-test-vintage-cc0.jpg')
- local textureWidth, textureHeight = texture:getDimensions()
- eyechart = {
- scale = .75,
- aspect = textureHeight / textureWidth,
- material = lovr.graphics.newMaterial( texture )
- }
- -- Configure the shader
- if useCanvas then
- local width, height = lovr.headset.getDisplayDimensions()
- -- Compile the shader
- screenShader = lovr.graphics.newShader(screenShaderVertex, screenShaderFragment)
- -- Set the resolution uniform
- screenShader:send("resolution", {width, height})
- -- Create two temporary canvases
- tempCanvas = {
- lovr.graphics.newCanvas(width, height),
- lovr.graphics.newCanvas(width, height)
- }
- tempCanvas[1]:getTexture():setWrap('clamp')
- tempCanvas[2]:getTexture():setWrap('clamp')
- end
- end
- -- The scene is drawn in this callback
- local function sceneDraw()
- lovr.graphics.clear() -- Because we are drawing to a canvas, we must manually clear
- lovr.graphics.setShader(nil)
- -- Draw text on the left and right
- for _, sign in ipairs {-1, 1} do
- lovr.graphics.push()
- lovr.graphics.rotate(sign * math.pi/2, 0, 1, 0)
- lovr.graphics.print("MOVE CLOSER", 0, 0, -10, 5)
- lovr.graphics.pop()
- end
- lovr.graphics.plane(eyechart.material, 0, 1.7, -1, eyechart.scale, eyechart.scale * eyechart.aspect)
- end
- -- This simple callback is used to draw one canvas onto another
- local function fullScreenDraw(source)
- lovr.graphics.fill(source)
- end
- function lovr.draw()
- if not useCanvas then
- -- No-postprocessing path: Call scene-draw callback without doing anything fancy
- sceneDraw()
- else
- -- Start by drawing the scene to one of our temp canvases.
- tempCanvas[1]:renderTo(sceneDraw)
- -- We now have the scene in a texture (a canvas), which means we can apply a full-screen effect
- -- by rendering the texture with a shader material. However, because our blur is separable,
- -- we will need to do this twice, once for horizontal blur and once for vertical.
- -- We would also like to do multiple blur passes at larger and larger scales, to get a blurrier blur.
- -- To achieve these many passes we will render from canvas A into B, and then B back into A, and repeat.
- lovr.graphics.setShader(screenShader)
- screenShader:send("direction", {1, 0})
- tempCanvas[2]:renderTo(fullScreenDraw, tempCanvas[1])
- screenShader:send("direction", {0, 1})
- tempCanvas[1]:renderTo(fullScreenDraw, tempCanvas[2])
- screenShader:send("direction", {2, 0})
- tempCanvas[2]:renderTo(fullScreenDraw, tempCanvas[1])
- screenShader:send("direction", {0, 2})
- tempCanvas[1]:renderTo(fullScreenDraw, tempCanvas[2])
- screenShader:send("direction", {4, 0})
- tempCanvas[2]:renderTo(fullScreenDraw, tempCanvas[1])
- screenShader:send("direction", {0, 4})
- lovr.graphics.fill(tempCanvas[2]) -- On the final pass, render directly to the screen.
- end
- end
|