123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- -- This demo renders four examples of mesh drawing:
- -- A plain mesh (one triangle, white)
- -- A mesh with a vertex map, in other words indexed triangles (a cube, magenta)
- -- An instanced mesh with its size controlled by gl_InstanceID and an equation (512 cubes animated, cyan)
- -- An instanced mesh with its size controlled by an attached attribute (512 cubes with random sizes, yellow)
- --
- -- Sample contributed by andi mcc
- local fragmentShader = require("shader")
- local mesh1, mesh2, mesh4
- local mesh4Instance
- local mesh1Program, mesh3Program, mesh4Program
- local gridSize = 8
- local gridSizeCubed = gridSize*gridSize*gridSize
- -- This reproduces the simple shader from the Physics example, but in the vertex shader
- -- the mesh coordinate is run through a customized function first.
- -- Call this function with a string containing a glsl function preTransform()
- -- which maps world space coordinates to world space coordinates to construct a shader.
- local function makeShader(prefix)
- return lovr.graphics.newShader(prefix .. [[
- out vec3 lightDirection;
- out vec3 normalDirection;
- out vec3 vertexPosition;
- vec3 lightPosition = vec3(10., 10., 3.);
- vec4 position(mat4 projection, mat4 transform, vec4 _vertex) {
- vec4 vertex = preTransform(_vertex);
- vec4 vVertex = transform * vertex;
- vec4 vLight = lovrView * vec4(lightPosition, 1.);
- lightDirection = normalize(vec3(vLight - vVertex));
- normalDirection = normalize(lovrNormalMatrix * lovrNormal);
- vertexPosition = vVertex.xyz;
- return projection * transform * vertex;
- }
- ]], fragmentShader)
- end
- local animate = 0
- function lovr.load()
- lovr.graphics.setCullingEnabled(true)
- -- This "standard" program is the same as the standard light shader from the other examples-- it does nothing.
- mesh1Program = makeShader("vec4 preTransform(vec4 v) { return v; }")
- -- This mesh is a single triangle
- mesh1 = lovr.graphics.newMesh({{ 'lovrPosition', 'float', 3 }, { 'lovrNormal', 'float', 3 }}, 3, 'triangles')
- mesh1:setVertices({{0,0,0, 0,0,1}, {1,0,0, 0,0,1}, {0,1,0, 0,0,1}})
- -- This mesh is a cube
- mesh2 = lovr.graphics.newMesh({{ 'lovrPosition', 'float', 3 }, { 'lovrNormal', 'float', 3 }}, 24, 'triangles')
- local mesh2Vertices = {
- {0,0,0, 0,0,-1}, -- Face front
- {0,1,0, 0,0,-1},
- {1,1,0, 0,0,-1},
- {1,0,0, 0,0,-1},
- {1,1,0, 0,1,0}, -- Face top
- {0,1,0, 0,1,0},
- {0,1,1, 0,1,0},
- {1,1,1, 0,1,0},
- {1,0,0, 1,0,0}, -- Face right
- {1,1,0, 1,0,0},
- {1,1,1, 1,0,0},
- {1,0,1, 1,0,0},
- {0,0,0, -1,0,0}, -- Face left
- {0,0,1, -1,0,0},
- {0,1,1, -1,0,0},
- {0,1,0, -1,0,0},
- {1,1,1, 0,0,1}, -- Face back
- {0,1,1, 0,0,1},
- {0,0,1, 0,0,1},
- {1,0,1, 0,0,1},
- {0,0,0, 0,-1,0}, -- Face bottom
- {1,0,0, 0,-1,0},
- {1,0,1, 0,-1,0},
- {0,0,1, 0,-1,0}
- }
- -- The cube specified above covers the space 0..1, so it's centered at (0.5, 0.5, 0.5). That's not right.
- -- Let's edit the first three coordinates of each vertex to center it at (0,0,0):
- for _, v in ipairs(mesh2Vertices) do
- for i=1,3 do
- v[i] = v[i] - 0.5
- end
- end
- mesh2:setVertices(mesh2Vertices)
- -- Indices to draw the faces of the cube out of triangles
- local mesh2Indexes = {
- 1, 2, 3, 1, 3, 4, -- Face front
- 5, 6, 7, 5, 7, 8, -- Face top
- 9, 10, 11, 9, 11, 12, -- Face right
- 13, 14, 15, 13, 15, 16, -- Face left
- 17, 18, 19, 17, 19, 20, -- Face back
- 21, 22, 23, 21, 23, 24, -- Face bottom
- }
- mesh2:setVertexMap(mesh2Indexes)
- -- This program draws many "instances" of a single model (in this example, a cube, but it could be anything)
- -- but uses the instance ID to recenter the model so that the various copies pack the volume of a cube.
- -- The model is resized according to a uniform and a little equation to make them wave nicely.
- mesh3Program = makeShader([[
- uniform int gridSize;
- uniform float animate;
- vec4 preTransform(vec4 v) {
- int instance = lovrInstanceID;
- int x = instance % gridSize;
- int y = (instance / gridSize) % gridSize;
- int z = (instance / gridSize) / gridSize;
- float cubeSize = (sin(float(x + y + z) + animate) + 1.) / 2.;
- return v * vec4(cubeSize,cubeSize,cubeSize,1) + vec4(x,y,z,0.) - vec4(gridSize, gridSize, gridSize, 0.)/2.;
- }
- ]])
- mesh3Program:send("gridSize", gridSize)
- -- This is exactly like the last program-- many instances of one model, packed into a cube volume.
- -- The difference is instead of the size being set by a single uniform, we'll pass in a list of sizes.
- -- We only have to pass in the cube mesh once, and it matches a copy of the cube for each size in the list.
- mesh4Program = makeShader([[
- uniform int gridSize;
- in float cubeSize;
- vec4 preTransform(vec4 v) {
- int instance = lovrInstanceID;
- int x = instance % gridSize;
- int y = (instance / gridSize) % gridSize;
- int z = (instance / gridSize) / gridSize;
- return v * vec4(cubeSize,cubeSize,cubeSize,1.) + vec4(x,y,z,0.) - vec4(gridSize, gridSize, gridSize, 0.)/2.;
- }
- ]])
- mesh4Program:send("gridSize", gridSize)
- -- Here we make an alternate version of mesh 2 (the cube) with the size list attached.
- mesh4 = lovr.graphics.newMesh({}, 24, 'triangles')
- mesh4Instance = lovr.graphics.newMesh({{'cubeSize', 'float', 1}}, gridSizeCubed, 'points')
- local mesh4Vertices = {}
- for i=1,gridSizeCubed do -- Hmm, what sizes should we use?
- table.insert(mesh4Vertices, {math.random()}) -- Let's just make them random.
- end
- mesh4Instance:setVertices(mesh4Vertices)
- mesh4:setVertexMap(mesh2Indexes)
- mesh4:attachAttributes(mesh2)
- mesh4:attachAttributes(mesh4Instance, 1)
- end
- function lovr.update(dt)
- animate = animate + dt/math.pi*2
- end
- function lovr.draw(eye)
- lovr.graphics.setShader(mesh1Program)
- lovr.graphics.push() -- White triangle
- lovr.graphics.setColor(1,1,1)
- lovr.graphics.translate(0, 0, -2)
- mesh1:draw(0,0,0)
- lovr.graphics.pop()
- lovr.graphics.push() -- Magenta cube
- lovr.graphics.setColor(1,0,1)
- lovr.graphics.rotate(1 * math.pi/2, 0, 1, 0)
- lovr.graphics.translate(0, 0, -2)
- mesh2:draw(0,0,0)
- lovr.graphics.pop()
- lovr.graphics.setShader(mesh3Program) -- Cyan cubes with size animated by uniform
- lovr.graphics.setColor(0,1,1)
- lovr.graphics.push()
- lovr.graphics.rotate(2 * math.pi/2, 0, 1, 0)
- lovr.graphics.translate(0, 0, -2)
- lovr.graphics.scale(1/gridSize)
- mesh3Program:send("animate", animate)
- mesh2:draw(lovr.math.mat4(), gridSizeCubed)
- lovr.graphics.pop()
- lovr.graphics.setShader(mesh4Program) -- Yellow cubes with size specified by mesh4
- lovr.graphics.setColor(1,1,0)
- lovr.graphics.push()
- lovr.graphics.rotate(3 * math.pi/2, 0, 1, 0)
- lovr.graphics.translate(0, 0, -2)
- lovr.graphics.scale(1/gridSize)
- mesh4:draw(lovr.math.mat4(), gridSizeCubed)
- lovr.graphics.pop()
- lovr.graphics.setColor(1,1,1)
- lovr.graphics.setShader()
- end
|