|
@@ -597,6 +597,204 @@ type
|
|
|
|
|
|
|
|
|
{$ifndef FPC_SYSTEM_HAS_EXP}
|
|
|
+{$ifdef SUPPORT_DOUBLE}
|
|
|
+ {
|
|
|
+ This code was translated from uclib code, the original code
|
|
|
+ had the following copyright notice:
|
|
|
+
|
|
|
+ *
|
|
|
+ * ====================================================
|
|
|
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
+ *
|
|
|
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
+ * Permission to use, copy, modify, and distribute this
|
|
|
+ * software is freely granted, provided that this notice
|
|
|
+ * is preserved.
|
|
|
+ * ====================================================
|
|
|
+ *}
|
|
|
+
|
|
|
+ {*
|
|
|
+ * Returns the exponential of x.
|
|
|
+ *
|
|
|
+ * Method
|
|
|
+ * 1. Argument reduction:
|
|
|
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
|
|
+ * Given x, find r and integer k such that
|
|
|
+ *
|
|
|
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
|
|
|
+ *
|
|
|
+ * Here r will be represented as r = hi-lo for better
|
|
|
+ * accuracy.
|
|
|
+ *
|
|
|
+ * 2. Approximation of exp(r) by a special rational function on
|
|
|
+ * the interval [0,0.34658]:
|
|
|
+ * Write
|
|
|
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
|
|
+ * We use a special Reme algorithm on [0,0.34658] to generate
|
|
|
+ * a polynomial of degree 5 to approximate R. The maximum error
|
|
|
+ * of this polynomial approximation is bounded by 2**-59. In
|
|
|
+ * other words,
|
|
|
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
|
|
+ * (where z=r*r, and the values of P1 to P5 are listed below)
|
|
|
+ * and
|
|
|
+ * | 5 | -59
|
|
|
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
|
|
+ * | |
|
|
|
+ * The computation of exp(r) thus becomes
|
|
|
+ * 2*r
|
|
|
+ * exp(r) = 1 + -------
|
|
|
+ * R - r
|
|
|
+ * r*R1(r)
|
|
|
+ * = 1 + r + ----------- (for better accuracy)
|
|
|
+ * 2 - R1(r)
|
|
|
+ * where
|
|
|
+ * 2 4 10
|
|
|
+ * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|
|
+ *
|
|
|
+ * 3. Scale back to obtain exp(x):
|
|
|
+ * From step 1, we have
|
|
|
+ * exp(x) = 2^k * exp(r)
|
|
|
+ *
|
|
|
+ * Special cases:
|
|
|
+ * exp(INF) is INF, exp(NaN) is NaN;
|
|
|
+ * exp(-INF) is 0, and
|
|
|
+ * for finite argument, only exp(0)=1 is exact.
|
|
|
+ *
|
|
|
+ * Accuracy:
|
|
|
+ * according to an error analysis, the error is always less than
|
|
|
+ * 1 ulp (unit in the last place).
|
|
|
+ *
|
|
|
+ * Misc. info.
|
|
|
+ * For IEEE double
|
|
|
+ * if x > 7.09782712893383973096e+02 then exp(x) overflow
|
|
|
+ * if x < -7.45133219101941108420e+02 then exp(x) underflow
|
|
|
+ *
|
|
|
+ * Constants:
|
|
|
+ * The hexadecimal values are the intended ones for the following
|
|
|
+ * constants. The decimal values may be used, provided that the
|
|
|
+ * compiler will convert from decimal to binary accurately enough
|
|
|
+ * to produce the hexadecimal values shown.
|
|
|
+ *
|
|
|
+ }
|
|
|
+ function fpc_exp_real(x: Double):Double;compilerproc;
|
|
|
+ const
|
|
|
+ one = 1.0,
|
|
|
+ halF : array[0..1] of double = (0.5,-0.5);
|
|
|
+ huge = 1.0e+300;
|
|
|
+ twom1000 = 9.33263618503218878990e-302; { 2**-1000=0x01700000,0}
|
|
|
+ o_threshold = 7.09782712893383973096e+02; { 0x40862E42, 0xFEFA39EF }
|
|
|
+ u_threshold = -7.45133219101941108420e+02; { 0xc0874910, 0xD52D3051 }
|
|
|
+ ln2HI : array[0..1] of double = ( 6.93147180369123816490e-01: { 0x3fe62e42, 0xfee00000 }
|
|
|
+ -6.93147180369123816490e-01); { 0xbfe62e42, 0xfee00000 }
|
|
|
+ ln2LO : array[0..1] of double = (1.90821492927058770002e-10; { 0x3dea39ef, 0x35793c76 }
|
|
|
+ -1.90821492927058770002e-10); { 0xbdea39ef, 0x35793c76 }
|
|
|
+ invln2 = 1.44269504088896338700e+00; { 0x3ff71547, 0x652b82fe }
|
|
|
+ P1 = 1.66666666666666019037e-01; { 0x3FC55555, 0x5555553E }
|
|
|
+ P2 = -2.77777777770155933842e-03; { 0xBF66C16C, 0x16BEBD93 }
|
|
|
+ P3 = 6.61375632143793436117e-05; { 0x3F11566A, 0xAF25DE2C }
|
|
|
+ P4 = -1.65339022054652515390e-06; { 0xBEBBBD41, 0xC5D26BF1 }
|
|
|
+ P5 = 4.13813679705723846039e-08; { 0x3E663769, 0x72BEA4D0 }
|
|
|
+ var
|
|
|
+ double hi : double = 0.0;
|
|
|
+ double lo = 0.0;
|
|
|
+ c : double;
|
|
|
+ t : double;
|
|
|
+ int32_t k=0;
|
|
|
+ xsb : longint;
|
|
|
+ hx,hy,lx : dword;
|
|
|
+ begin
|
|
|
+ hx:=float64(x).high;
|
|
|
+ xsb := (hx shr 31) and 1; { sign bit of x }
|
|
|
+ hx := hx and $7fffffff; { high word of |x| }
|
|
|
+
|
|
|
+ { filter out non-finite argument }
|
|
|
+ if hx >= $40862E42 then
|
|
|
+ begin { if |x|>=709.78... }
|
|
|
+ if hx >= $7ff00000
|
|
|
+ begin
|
|
|
+ lx:=float64(x).low;
|
|
|
+ if ((hx and $fffff) or lx)<>0 then
|
|
|
+ begin
|
|
|
+ result:=x+x; { NaN }
|
|
|
+ exit;
|
|
|
+ else
|
|
|
+ else
|
|
|
+ begin
|
|
|
+ if xsb=0 then
|
|
|
+ result:=x
|
|
|
+ else
|
|
|
+ result:=0.0; { exp(+-inf)=begininf,0end }
|
|
|
+ exit;
|
|
|
+ end;
|
|
|
+ end;
|
|
|
+ if x > o_threshold then
|
|
|
+ begin
|
|
|
+ result:=huge*huge; { overflow }
|
|
|
+ exit;
|
|
|
+ end;
|
|
|
+ if x < u_threshold then
|
|
|
+ begin
|
|
|
+ result:=twom1000*twom1000; { underflow }
|
|
|
+ exit;
|
|
|
+ end;
|
|
|
+ end;
|
|
|
+
|
|
|
+ { argument reduction }
|
|
|
+ if hx > $3fd62e42 then
|
|
|
+ begin { if |x| > 0.5 ln2 }
|
|
|
+ if hx < $3FF0A2B2 then { and |x| < 1.5 ln2 }
|
|
|
+ begin
|
|
|
+ hi := x-ln2HI[xsb];
|
|
|
+ lo:=ln2LO[xsb];
|
|
|
+ k := 1-xsb-xsb;
|
|
|
+ end
|
|
|
+ else
|
|
|
+ begin
|
|
|
+ k := invln2*x+halF[xsb];
|
|
|
+ t := k;
|
|
|
+ hi := x - t*ln2HI[0]; { t*ln2HI is exact here }
|
|
|
+ lo := t*ln2LO[0];
|
|
|
+ end;
|
|
|
+ x := hi - lo;
|
|
|
+ end
|
|
|
+ else if hx < $3e300000 then
|
|
|
+ begin { when |x|<2**-28 }
|
|
|
+ if huge+x>one then
|
|
|
+ begin
|
|
|
+ result:=one+x;{ trigger inexact }
|
|
|
+ exit;
|
|
|
+ end;
|
|
|
+ end
|
|
|
+ else
|
|
|
+ k := 0;
|
|
|
+
|
|
|
+ { x is now in primary range }
|
|
|
+ t:=x*x;
|
|
|
+ c:=x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
|
+ if k=0 then
|
|
|
+ begin
|
|
|
+ result:=one-((x*c)/(c-2.0)-x);
|
|
|
+ exit;
|
|
|
+ end
|
|
|
+ else
|
|
|
+ y := one-((lo-(x*c)/(2.0-c))-hi);
|
|
|
+
|
|
|
+ if k >= -1021
|
|
|
+ begin
|
|
|
+ hy:=float64(y).high;
|
|
|
+ float64(y).high:=hy+(k shl 20); { add k to y's exponent }
|
|
|
+ result:=y;
|
|
|
+ end
|
|
|
+ else
|
|
|
+ begin
|
|
|
+ hy:=float64(y).high;
|
|
|
+ float64(y).high:=hy+((k+1000) shl 20); { add k to y's exponent }
|
|
|
+ result:=y*twom1000;
|
|
|
+ end;
|
|
|
+ end;
|
|
|
+
|
|
|
+{$else SUPPORT_DOUBLE}
|
|
|
+
|
|
|
function fpc_exp_real(d: ValReal):ValReal;compilerproc;
|
|
|
{*****************************************************************}
|
|
|
{ Exponential Function }
|
|
@@ -668,6 +866,8 @@ type
|
|
|
result := d;
|
|
|
end;
|
|
|
end;
|
|
|
+{$endif SUPPORT_DOUBLE}
|
|
|
+
|
|
|
{$endif}
|
|
|
|
|
|
|
|
@@ -695,7 +895,7 @@ type
|
|
|
else
|
|
|
result:=tr;
|
|
|
end;
|
|
|
-{$endif}
|
|
|
+{$endif FPC_SYSTEM_HAS_EXP}
|
|
|
|
|
|
|
|
|
{$ifdef FPC_CURRENCY_IS_INT64}
|