2
0
peter 24 жил өмнө
parent
commit
e7c86006db

+ 34 - 135
rtl/i386/math.inc

@@ -1,9 +1,9 @@
 {
 {
     $Id$
     $Id$
     This file is part of the Free Pascal run time library.
     This file is part of the Free Pascal run time library.
-    Copyright (c) 1999-2000 by the Free Pascal development team
+    Copyright (c) 1999-2001 by the Free Pascal development team
 
 
-    Implementation of mathamatical Routines (only for real)
+    Implementation of mathematical routines (for extended type)
 
 
     See the file COPYING.FPC, included in this distribution,
     See the file COPYING.FPC, included in this distribution,
     for details about the copyright.
     for details about the copyright.
@@ -19,15 +19,24 @@
                        EXTENDED data type routines
                        EXTENDED data type routines
  ****************************************************************************}
  ****************************************************************************}
 
 
+    {$define FPC_SYSTEM_HAS_PI}
     function pi : extended;[internproc:in_pi];
     function pi : extended;[internproc:in_pi];
+    {$define FPC_SYSTEM_HAS_ABS}
     function abs(d : extended) : extended;[internproc:in_abs_extended];
     function abs(d : extended) : extended;[internproc:in_abs_extended];
+    {$define FPC_SYSTEM_HAS_SQR}
     function sqr(d : extended) : extended;[internproc:in_sqr_extended];
     function sqr(d : extended) : extended;[internproc:in_sqr_extended];
+    {$define FPC_SYSTEM_HAS_SQRT}
     function sqrt(d : extended) : extended;[internproc:in_sqrt_extended];
     function sqrt(d : extended) : extended;[internproc:in_sqrt_extended];
+    {$define FPC_SYSTEM_HAS_ARCTAN}
     function arctan(d : extended) : extended;[internproc:in_arctan_extended];
     function arctan(d : extended) : extended;[internproc:in_arctan_extended];
+    {$define FPC_SYSTEM_HAS_LN}
     function ln(d : extended) : extended;[internproc:in_ln_extended];
     function ln(d : extended) : extended;[internproc:in_ln_extended];
+    {$define FPC_SYSTEM_HAS_SIN}
     function sin(d : extended) : extended;[internproc:in_sin_extended];
     function sin(d : extended) : extended;[internproc:in_sin_extended];
+    {$define FPC_SYSTEM_HAS_COS}
     function cos(d : extended) : extended;[internproc:in_cos_extended];
     function cos(d : extended) : extended;[internproc:in_cos_extended];
 
 
+    {$define FPC_SYSTEM_HAS_EXP}
     function exp(d : extended) : extended;assembler;[internconst:in_const_exp];
     function exp(d : extended) : extended;assembler;[internconst:in_const_exp];
        asm
        asm
             // comes from DJ GPP
             // comes from DJ GPP
@@ -61,6 +70,7 @@
       end;
       end;
 
 
 
 
+    {$define FPC_SYSTEM_HAS_FRAC}
     function frac(d : extended) : extended;assembler;[internconst:in_const_frac];
     function frac(d : extended) : extended;assembler;[internconst:in_const_frac];
       asm
       asm
             subl $16,%esp
             subl $16,%esp
@@ -81,6 +91,7 @@
       end ['ECX'];
       end ['ECX'];
 
 
 
 
+    {$define FPC_SYSTEM_HAS_INT}
     function int(d : extended) : extended;assembler;[internconst:in_const_int];
     function int(d : extended) : extended;assembler;[internconst:in_const_int];
       asm
       asm
             subl $16,%esp
             subl $16,%esp
@@ -98,7 +109,9 @@
       end ['ECX'];
       end ['ECX'];
 
 
 
 
-    function trunc(d : extended) : longint;assembler;[internconst:in_const_trunc];
+
+    {$define FPC_SYSTEM_HAS_TRUNC}
+    function trunc(d : extended) : int64;assembler;[internconst:in_const_trunc];
       asm
       asm
             subl $16,%esp
             subl $16,%esp
             fnstcw -4(%ebp)
             fnstcw -4(%ebp)
@@ -109,12 +122,14 @@
             fldcw -8(%ebp)
             fldcw -8(%ebp)
             fwait
             fwait
             fldt d
             fldt d
-            fistpl -8(%ebp)
-            movl -8(%ebp),%eax
+            fistpq -12(%ebp)
+            movl -12(%ebp),%eax
+            movl -8(%ebp),%edx
             fldcw -4(%ebp)
             fldcw -4(%ebp)
-      end ['EAX','ECX'];
+      end ['EAX','ECX','EDX'];
 
 
 
 
+    {$define FPC_SYSTEM_HAS_ROUND}
     function round(d : extended) : longint;assembler;[internconst:in_const_round];
     function round(d : extended) : longint;assembler;[internconst:in_const_round];
       asm
       asm
             subl $8,%esp
             subl $8,%esp
@@ -130,6 +145,7 @@
       end ['EAX','ECX'];
       end ['EAX','ECX'];
 
 
 
 
+    {$define FPC_SYSTEM_HAS_POWER}
    function power(bas,expo : extended) : extended;
    function power(bas,expo : extended) : extended;
      begin
      begin
         if bas=0 then
         if bas=0 then
@@ -179,6 +195,7 @@
          end;
          end;
      end;
      end;
 
 
+
 {****************************************************************************
 {****************************************************************************
                     Helper routines to support old TP styled reals
                     Helper routines to support old TP styled reals
  ****************************************************************************}
  ****************************************************************************}
@@ -210,138 +227,20 @@
          real2double:=double(res);
          real2double:=double(res);
       end;
       end;
 
 
-{****************************************************************************
-                         Fixed data type routines
- ****************************************************************************}
-
-{$ifdef HASFIXED} { Not yet allowed }
-
-    function sqrt(d : fixed) : fixed;
-
-      begin
-         asm
-            movl d,%eax
-            movl %eax,%ebx
-            movl %eax,%ecx
-            jecxz .L_kl
-            xorl %esi,%esi
-         .L_it:
-            xorl %edx,%edx
-            idivl %ebx
-            addl %ebx,%eax
-            shrl $1,%eax
-            subl %eax,%esi
-            cmpl $1,%esi
-            jbe .L_kl
-            movl %eax,%esi
-            movl %eax,%ebx
-            movl %ecx,%eax
-            jmp .L_it
-         .L_kl:
-            shl $8,%eax
-            leave
-            ret $4
-         end;
-      end;
-
-
-    function int(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the integral part of d                                  }
-    {*****************************************************************}
-    begin
-      int:=d and $ffff0000;       { keep only upper bits      }
-    end;
-
-
-    function trunc(d : fixed) : longint;
-    {*****************************************************************}
-    { Returns the Truncated integral part of d                        }
-    {*****************************************************************}
-    begin
-      trunc:=longint(integer(d shr 16));   { keep only upper 16 bits  }
-    end;
-
-    function frac(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the Fractional part of d                                }
-    {*****************************************************************}
-    begin
-      frac:=d AND $ffff;         { keep only decimal parts - lower 16 bits }
-    end;
-
-    function abs(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the Absolute value of d                                 }
-    {*****************************************************************}
-    begin
-       asm
-           movl d,%eax
-           rol $16,%eax             { Swap high & low word.}
-           {Absolute value: Invert all bits and increment when <0 .}
-           cwd                      { When ax<0, dx contains $ffff}
-           xorw %dx,%ax             { Inverts all bits when dx=$ffff.}
-           subw %dx,%ax             { Increments when dx=$ffff.}
-           rol $16,%eax             { Swap high & low word.}
-           leave
-           ret $4
-       end;
-    end;
-
-
-    function sqr(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the Absolute squared value of d                         }
-    {*****************************************************************}
-    begin
-            {16-bit precision needed, not 32 =)}
-       sqr := d*d;
-{       sqr := (d SHR 8 * d) SHR 8; }
-    end;
-
-
-    function Round(x: fixed): longint;
-    {*****************************************************************}
-    { Returns the Rounded value of d as a longint                     }
-    {*****************************************************************}
-    var
-     lowf:integer;
-     highf:integer;
-    begin
-      lowf:=x and $ffff;       { keep decimal part ... }
-      highf :=integer(x shr 16);
-      if lowf > 5 then
-        highf:=highf+1
-      else
-      if lowf = 5 then
-      begin
-        { here we must check the sign ...       }
-        { if greater or equal to zero, then     }
-        { greater value will be found by adding }
-        { one...                                }
-         if highf >= 0 then
-           Highf:=Highf+1;
-      end;
-      Round:= longint(highf);
-    end;
-
-{$endif HASFIXED}
-
 {
 {
   $Log$
   $Log$
-  Revision 1.5  2001-04-13 22:26:32  peter
-    * remove warnings
+  Revision 1.6  2001-07-30 21:38:54  peter
+    * m68k updates merged
 
 
-  Revision 1.4  2000/10/21 18:20:17  florian
-    * a lot of small changes:
-       - setlength is internal
-       - win32 graph unit extended
-       ....
+  Revision 1.1.2.3  2001/07/29 23:56:28  carl
+  - removed internamth define (always internal)
 
 
-  Revision 1.3  2000/07/14 10:33:10  michael
-  + Conditionals fixed
+  Revision 1.1.2.2  2001/04/16 10:56:13  peter
+    * fixes for stricter compiler
 
 
-  Revision 1.2  2000/07/13 11:33:41  michael
-  + removed logs
+  Revision 1.1.2.1  2001/04/03 20:33:01  marco
+   * Quickfixed trunc to int64 for Sebastian.
 
 
-}
+  Revision 1.1  2000/07/13 06:30:42  michael
+  + Initial import
+}

+ 995 - 0
rtl/inc/genmath.inc

@@ -0,0 +1,995 @@
+{
+    $Id$
+    This file is part of the Free Pascal run time library.
+    Copyright (c) 1999-2001 by Several contributors
+
+    Generic mathemtical routines (on type real)
+
+    See the file COPYING.FPC, included in this distribution,
+    for details about the copyright.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+
+ **********************************************************************}
+{*************************************************************************}
+{  Credits                                                                }
+{*************************************************************************}
+{       Copyright Abandoned, 1987, Fred Fish                              }
+{                                                                         }
+{       This previously copyrighted work has been placed into the         }
+{       public domain by the author (Fred Fish) and may be freely used    }
+{       for any purpose, private or commercial.  I would appreciate       }
+{       it, as a courtesy, if this notice is left in all copies and       }
+{       derivative works.  Thank you, and enjoy...                        }
+{                                                                         }
+{       The author makes no warranty of any kind with respect to this     }
+{       product and explicitly disclaims any implied warranties of        }
+{       merchantability or fitness for any particular purpose.            }
+{-------------------------------------------------------------------------}
+{       Copyright (c) 1992 Odent Jean Philippe                            }
+{                                                                         }
+{       The source can be modified as long as my name appears and some    }
+{       notes explaining the modifications done are included in the file. }
+{-------------------------------------------------------------------------}
+{       Copyright (c) 1997 Carl Eric Codere                               }
+{-------------------------------------------------------------------------}
+
+{$goto on}
+
+type
+    TabCoef = array[0..6] of Real;
+
+
+const
+      PIO2   =  1.57079632679489661923;       {  pi/2        }
+      PIO4   =  7.85398163397448309616E-1;    {  pi/4        }
+      SQRT2  =  1.41421356237309504880;       {  sqrt(2)     }
+      SQRTH  =  7.07106781186547524401E-1;    {  sqrt(2)/2   }
+      LOG2E  =  1.4426950408889634073599;     {  1/log(2)    }
+      SQ2OPI =  7.9788456080286535587989E-1;  {  sqrt( 2/pi )}
+      LOGE2  =  6.93147180559945309417E-1;    {  log(2)      }
+      LOGSQ2 =  3.46573590279972654709E-1;    {  log(2)/2    }
+      THPIO4 =  2.35619449019234492885;       {  3*pi/4      }
+      TWOOPI =  6.36619772367581343075535E-1; {  2/pi        }
+      lossth =  1.073741824e9;
+      MAXLOG =  8.8029691931113054295988E1;    { log(2**127)  }
+      MINLOG = -8.872283911167299960540E1;     { log(2**-128) }
+
+      DP1 =   7.85398125648498535156E-1;
+      DP2 =   3.77489470793079817668E-8;
+      DP3 =   2.69515142907905952645E-15;
+
+const sincof : TabCoef = (
+                1.58962301576546568060E-10,
+               -2.50507477628578072866E-8,
+                2.75573136213857245213E-6,
+               -1.98412698295895385996E-4,
+                8.33333333332211858878E-3,
+               -1.66666666666666307295E-1, 0);
+      coscof : TabCoef = (
+               -1.13585365213876817300E-11,
+                2.08757008419747316778E-9,
+               -2.75573141792967388112E-7,
+                2.48015872888517045348E-5,
+               -1.38888888888730564116E-3,
+                4.16666666666665929218E-2, 0);
+
+
+
+{$ifndef FPC_SYSTEM_HAS_TRUNC}
+type
+  float32 = longint;
+{$ifdef ENDIAN_LITTLE}
+  float64 = packed record
+    low: longint;
+    high: longint;
+  end;
+{$else}
+  float64 = packed record
+    high: longint;
+    low: longint;
+  end;
+{$endif}
+  flag = byte;
+
+  Function extractFloat64Frac0(a: float64): longint;
+  Begin
+    extractFloat64Frac0 := a.high and $000FFFFF;
+  End;
+
+  Function extractFloat64Frac1(a: float64): longint;
+  Begin
+    extractFloat64Frac1 := a.low;
+  End;
+
+ Function extractFloat64Exp(a: float64): smallint;
+ Begin
+    extractFloat64Exp:= ( a.high shr 20 ) AND $7FF;
+ End;
+
+ Function extractFloat64Sign(a: float64) : flag;
+ Begin
+    extractFloat64Sign := a.high shr 31;
+ End;
+
+Procedure
+ shortShift64Left(
+     a0:longint; a1:longint; count:smallint; VAR z0Ptr:longint; VAR z1Ptr:longint );
+Begin
+    z1Ptr := a1 shl count;
+    if count = 0 then
+      z0Ptr := a0
+    else
+      z0Ptr := ( a0 shl count ) OR ( a1 shr ( ( - count ) AND 31 ) );
+End;
+
+   function float64_to_int32_round_to_zero(a: float64 ): longint;
+    Var
+      aSign: flag;
+      aExp, shiftCount: smallint;
+      aSig0, aSig1, absZ, aSigExtra: longint;
+      z: smallint;
+      label invalid;
+   Begin
+     aSig1 := extractFloat64Frac1( a );
+     aSig0 := extractFloat64Frac0( a );
+     aExp := extractFloat64Exp( a );
+     aSign := extractFloat64Sign( a );
+     shiftCount := aExp - $413;
+     if ( 0 <= shiftCount ) then
+     Begin
+         if ( $41E < aExp ) then
+         Begin
+             if ( ( aExp = $7FF ) AND  (( aSig0 OR  aSig1 )<>0) ) then
+                aSign := 0;
+             goto invalid;
+         End;
+         shortShift64Left(
+             aSig0 OR  $00100000, aSig1, shiftCount, absZ, aSigExtra );
+     End
+     else
+     Begin
+         if ( aExp < $3FF ) then
+         Begin
+             float64_to_int32_round_to_zero := 0;
+             exit;
+         End;
+         aSig0 := aSig0 or $00100000;
+         aSigExtra := ( aSig0 shl ( shiftCount and 31 ) ) OR  aSig1;
+         absZ := aSig0 shr ( - shiftCount );
+     End;
+     if aSign <> 0 then
+       z := - absZ
+     else
+       z := absZ;
+     if ( (( aSign xor flag( z < 0 )) <> 0) AND  (z<>0) ) then
+     Begin
+  invalid:
+        RunError(207);
+        exit;
+    End;
+    float64_to_int32_round_to_zero := z;
+   End;
+
+
+ Function ExtractFloat32Frac(a : Float32) : longint;
+ Begin
+    ExtractFloat32Frac := A AND $007FFFFF;
+ End;
+
+
+ Function extractFloat32Exp( a: float32 ): smallint;
+  Begin
+    extractFloat32Exp := (a shr 23) AND $FF;
+  End;
+
+ Function extractFloat32Sign( a: float32 ): Flag;
+  Begin
+    extractFloat32Sign := a shr 31;
+  End;
+
+
+
+
+Function float32_to_int32_round_to_zero( a: Float32 ): longint;
+ Var
+    aSign : flag;
+    aExp, shiftCount : smallint;
+    aSig : longint;
+    z : longint;
+ Begin
+    aSig := extractFloat32Frac( a );
+    aExp := extractFloat32Exp( a );
+    aSign := extractFloat32Sign( a );
+    shiftCount := aExp - $9E;
+    if ( 0 <= shiftCount ) then
+      Begin
+        if ( a <> $CF000000 ) then
+          Begin
+            if ( (aSign=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
+              Begin
+                RunError(207);
+                exit;
+              end;
+          End;
+        RunError(207);
+        exit;
+      End
+    else
+      if ( aExp <= $7E ) then
+      Begin
+        float32_to_int32_round_to_zero := 0;
+        exit;
+      End;
+    aSig := ( aSig or $00800000 ) shl 8;
+    z := aSig shr ( - shiftCount );
+    if ( aSign<>0 ) then z := - z;
+    float32_to_int32_round_to_zero := z;
+ End;
+
+
+    function trunc(d : real) : longint;[internconst:in_const_trunc];
+    var
+     l: longint;
+     f32 : float32;
+     f64 : float64;
+    Begin
+     { in emulation mode the real is equal to a single }
+     { otherwise in fpu mode, it is equal to a double  }
+     { extended is not supported yet. }
+     if sizeof(D) > 8 then
+        RunError(255);
+     if sizeof(D)=8 then
+       begin
+         move(d,f64,sizeof(f64));
+         trunc:=float64_to_int32_round_to_zero(f64);
+       end
+     else
+       begin
+         move(d,f32,sizeof(f32));
+         trunc:=float32_to_int32_round_to_zero(f32);
+       end;
+    end;
+{$endif}
+
+
+
+
+{$ifndef FPC_SYSTEM_HAS_INT}
+    function int(d : real) : real;[internconst:in_const_int];
+      begin
+        { this will be correct since real = single in the case of }
+        { the motorola version of the compiler...                 }
+        int:=real(trunc(d));
+      end;
+{$endif}
+
+
+{$ifndef FPC_SYSTEM_HAS_ABS}
+    function abs(d : Real) : Real;[internconst:in_const_abs];
+    begin
+       if( d < 0.0 ) then
+         abs := -d
+      else
+         abs := d ;
+    end;
+{$endif}
+
+
+    function frexp(x:Real; var e:Integer ):Real;
+    {*  frexp() extracts the exponent from x.  It returns an integer     *}
+    {*  power of two to expnt and the significand between 0.5 and 1      *}
+    {*  to y.  Thus  x = y * 2**expn.                                    *}
+    begin
+      e :=0;
+      if (abs(x)<0.5) then
+       While (abs(x)<0.5) do
+       begin
+         x := x*2;
+         Dec(e);
+       end
+      else
+       While (abs(x)>1) do
+       begin
+         x := x/2;
+         Inc(e);
+       end;
+      frexp := x;
+    end;
+
+
+    function ldexp( x: Real; N: Integer):Real;
+    {* ldexp() multiplies x by 2**n.                                    *}
+    var r : Real;
+    begin
+      R := 1;
+      if N>0 then
+         while N>0 do
+         begin
+            R:=R*2;
+            Dec(N);
+         end
+      else
+        while N<0 do
+        begin
+           R:=R/2;
+           Inc(N);
+        end;
+      ldexp := x * R;
+    end;
+
+
+    function polevl(var x:Real; var Coef:TabCoef; N:Integer):Real;
+    {*****************************************************************}
+    { Evaluate polynomial                                             }
+    {*****************************************************************}
+    {                                                                 }
+    { SYNOPSIS:                                                       }
+    {                                                                 }
+    {  int N;                                                         }
+    {  double x, y, coef[N+1], polevl[];                              }
+    {                                                                 }
+    {  y = polevl( x, coef, N );                                      }
+    {                                                                 }
+    {  DESCRIPTION:                                                   }
+    {                                                                 }
+    {     Evaluates polynomial of degree N:                           }
+    {                                                                 }
+    {                       2          N                              }
+    {   y  =  C  + C x + C x  +...+ C x                               }
+    {          0    1     2          N                                }
+    {                                                                 }
+    {   Coefficients are stored in reverse order:                     }
+    {                                                                 }
+    {   coef[0] = C  , ..., coef[N] = C  .                            }
+    {              N                   0                              }
+    {                                                                 }
+    {   The function p1evl() assumes that coef[N] = 1.0 and is        }
+    {   omitted from the array.  Its calling arguments are            }
+    {   otherwise the same as polevl().                               }
+    {                                                                 }
+    {  SPEED:                                                         }
+    {                                                                 }
+    {   In the interest of speed, there are no checks for out         }
+    {   of bounds arithmetic.  This routine is used by most of        }
+    {   the functions in the library.  Depending on available         }
+    {   equipment features, the user may wish to rewrite the          }
+    {   program in microcode or assembly language.                    }
+    {*****************************************************************}
+    var ans : Real;
+        i   : Integer;
+
+    begin
+      ans := Coef[0];
+      for i:=1 to N do
+        ans := ans * x + Coef[i];
+      polevl:=ans;
+    end;
+
+
+    function p1evl(var x:Real; var Coef:TabCoef; N:Integer):Real;
+    {                                                           }
+    { Evaluate polynomial when coefficient of x  is 1.0.        }
+    { Otherwise same as polevl.                                 }
+    {                                                           }
+    var
+        ans : Real;
+        i   : Integer;
+    begin
+      ans := x + Coef[0];
+      for i:=1 to N-1 do
+        ans := ans * x + Coef[i];
+      p1evl := ans;
+    end;
+
+
+
+
+
+{$ifndef FPC_SYSTEM_HAS_SQR}
+    function sqr(d : Real) : Real;[internconst:in_const_sqr];
+    begin
+      sqr := d*d;
+    end;
+{$endif}
+
+{$ifndef FPC_SYSTEM_HAS_PI}
+    function pi : Real;[internconst:in_const_pi];
+    begin
+      pi := 3.1415926535897932385;
+    end;
+{$endif}
+
+
+{$ifndef FPC_SYSTEM_HAS_SQRT}
+    function sqrt(d:Real):Real;[internconst:in_const_sqrt];
+    {*****************************************************************}
+    { Square root                                                     }
+    {*****************************************************************}
+    {                                                                 }
+    { SYNOPSIS:                                                       }
+    {                                                                 }
+    { double x, y, sqrt();                                            }
+    {                                                                 }
+    { y = sqrt( x );                                                  }
+    {                                                                 }
+    { DESCRIPTION:                                                    }
+    {                                                                 }
+    { Returns the square root of x.                                   }
+    {                                                                 }
+    { Range reduction involves isolating the power of two of the      }
+    { argument and using a polynomial approximation to obtain         }
+    { a rough value for the square root.  Then Heron's iteration      }
+    { is used three times to converge to an accurate value.           }
+    {*****************************************************************}
+    var e   : Integer;
+        w,z : Real;
+    begin
+       if( d <= 0.0 ) then
+       begin
+           if( d < 0.0 ) then
+               RunError(207);
+           sqrt := 0.0;
+       end
+     else
+       begin
+          w := d;
+          { separate exponent and significand }
+           z := frexp( d, e );
+
+          {  approximate square root of number between 0.5 and 1  }
+          {  relative error of approximation = 7.47e-3            }
+          d := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
+
+          { adjust for odd powers of 2 }
+          if odd(e) then
+             d := d*SQRT2;
+
+          { re-insert exponent }
+          d := ldexp( d, (e div 2) );
+
+          { Newton iterations: }
+          d := 0.5*(d + w/d);
+          d := 0.5*(d + w/d);
+          d := 0.5*(d + w/d);
+          d := 0.5*(d + w/d);
+          d := 0.5*(d + w/d);
+          d := 0.5*(d + w/d);
+          sqrt := d;
+       end;
+    end;
+{$endif}
+
+
+
+
+{$ifndef FPC_SYSTEM_HAS_EXP}
+    function Exp(d:Real):Real;[internconst:in_const_exp];
+    {*****************************************************************}
+    { Exponential Function                                            }
+    {*****************************************************************}
+    {                                                                 }
+    { SYNOPSIS:                                                       }
+    {                                                                 }
+    { double x, y, exp();                                             }
+    {                                                                 }
+    { y = exp( x );                                                   }
+    {                                                                 }
+    { DESCRIPTION:                                                    }
+    {                                                                 }
+    { Returns e (2.71828...) raised to the x power.                   }
+    {                                                                 }
+    { Range reduction is accomplished by separating the argument      }
+    { into an integer k and fraction f such that                      }
+    {                                                                 }
+    {     x    k  f                                                   }
+    {    e  = 2  e.                                                   }
+    {                                                                 }
+    { A Pade' form of degree 2/3 is used to approximate exp(f)- 1     }
+    { in the basic range [-0.5 ln 2, 0.5 ln 2].                       }
+    {*****************************************************************}
+    const  P : TabCoef = (
+           1.26183092834458542160E-4,
+           3.02996887658430129200E-2,
+           1.00000000000000000000E0, 0, 0, 0, 0);
+           Q : TabCoef = (
+           3.00227947279887615146E-6,
+           2.52453653553222894311E-3,
+           2.27266044198352679519E-1,
+           2.00000000000000000005E0, 0 ,0 ,0);
+
+           C1 = 6.9335937500000000000E-1;
+            C2 = 2.1219444005469058277E-4;
+    var n : Integer;
+        px, qx, xx : Real;
+    begin
+      if( d > MAXLOG) then
+          RunError(205)
+      else
+      if( d < MINLOG ) then
+      begin
+        Runerror(205);
+      end
+      else
+      begin
+
+     { Express e**x = e**g 2**n }
+     {   = e**g e**( n loge(2) ) }
+     {   = e**( g + n loge(2) )  }
+
+        px := d * LOG2E;
+        qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
+        n  := Trunc(qx);
+        d  := d - qx * C1;
+        d  := d + qx * C2;
+
+      { rational approximation for exponential  }
+      { of the fractional part: }
+      { e**x - 1  =  2x P(x**2)/( Q(x**2) - P(x**2) )  }
+        xx := d * d;
+        px := d * polevl( xx, P, 2 );
+        d  :=  px/( polevl( xx, Q, 3 ) - px );
+        d  := ldexp( d, 1 );
+        d  :=  d + 1.0;
+        d  := ldexp( d, n );
+        Exp := d;
+      end;
+    end;
+{$endif}
+
+
+{$ifndef FPC_SYSTEM_HAS_ROUND}
+    function Round(d: Real): longint;[internconst:in_const_round];
+     var
+      fr: Real;
+      tr: Real;
+    Begin
+       fr := Frac(d);
+       tr := Trunc(d);
+       if fr > 0.5 then
+          Round:=Trunc(d)+1
+       else
+       if fr < 0.5 then
+          Round:=Trunc(d)
+       else { fr = 0.5 }
+          { check sign to decide ... }
+          { as in Turbo Pascal...    }
+          if d >= 0.0 then
+            Round := Trunc(d)+1
+          else
+            Round := Trunc(d);
+    end;
+{$endif}
+
+
+{$ifndef FPC_SYSTEM_HAS_LN}
+    function Ln(d:Real):Real;[internconst:in_const_ln];
+    {*****************************************************************}
+    { Natural Logarithm                                               }
+    {*****************************************************************}
+    {                                                                 }
+    { SYNOPSIS:                                                       }
+    {                                                                 }
+    { double x, y, log();                                             }
+    {                                                                 }
+    { y = ln( x );                                                    }
+    {                                                                 }
+    { DESCRIPTION:                                                    }
+    {                                                                 }
+    { Returns the base e (2.718...) logarithm of x.                   }
+    {                                                                 }
+    { The argument is separated into its exponent and fractional      }
+    { parts.  If the exponent is between -1 and +1, the logarithm     }
+    { of the fraction is approximated by                              }
+    {                                                                 }
+    {     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).                   }
+    {                                                                 }
+    { Otherwise, setting  z = 2(x-1)/x+1),                            }
+    {                                                                 }
+    {     log(x) = z + z**3 P(z)/Q(z).                                }
+    {                                                                 }
+    {*****************************************************************}
+    const  P : TabCoef = (
+     {  Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
+         1/sqrt(2) <= x < sqrt(2) }
+
+           4.58482948458143443514E-5,
+           4.98531067254050724270E-1,
+           6.56312093769992875930E0,
+           2.97877425097986925891E1,
+           6.06127134467767258030E1,
+           5.67349287391754285487E1,
+           1.98892446572874072159E1);
+       Q : TabCoef = (
+           1.50314182634250003249E1,
+           8.27410449222435217021E1,
+           2.20664384982121929218E2,
+           3.07254189979530058263E2,
+           2.14955586696422947765E2,
+           5.96677339718622216300E1, 0);
+
+     { Coefficients for log(x) = z + z**3 P(z)/Q(z),
+        where z = 2(x-1)/(x+1)
+        1/sqrt(2) <= x < sqrt(2)  }
+
+       R : TabCoef = (
+           -7.89580278884799154124E-1,
+            1.63866645699558079767E1,
+           -6.41409952958715622951E1, 0, 0, 0, 0);
+       S : TabCoef = (
+           -3.56722798256324312549E1,
+            3.12093766372244180303E2,
+           -7.69691943550460008604E2, 0, 0, 0, 0);
+
+    var e : Integer;
+       z, y : Real;
+
+    Label Ldone;
+    begin
+       if( d <= 0.0 ) then
+          RunError(207);
+       d := frexp( d, e );
+
+    { logarithm using log(x) = z + z**3 P(z)/Q(z),
+      where z = 2(x-1)/x+1) }
+
+       if( (e > 2) or (e < -2) ) then
+       begin
+         if( d < SQRTH ) then
+         begin
+           {  2( 2x-1 )/( 2x+1 ) }
+          Dec(e, 1);
+          z := d - 0.5;
+          y := 0.5 * z + 0.5;
+         end
+         else
+         begin
+         {   2 (x-1)/(x+1)   }
+           z := d - 0.5;
+         z := z - 0.5;
+         y := 0.5 * d  + 0.5;
+         end;
+         d := z / y;
+         { /* rational form */ }
+         z := d*d;
+         z := d + d * ( z * polevl( z, R, 2 ) / p1evl( z, S, 3 ) );
+         goto ldone;
+       end;
+
+    { logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) }
+
+       if( d < SQRTH ) then
+       begin
+         Dec(e, 1);
+         d := ldexp( d, 1 ) - 1.0; {  2x - 1  }
+       end
+       else
+         d := d - 1.0;
+
+       { rational form  }
+       z := d*d;
+       y := d * ( z * polevl( d, P, 6 ) / p1evl( d, Q, 6 ) );
+       y := y - ldexp( z, -1 );   {  y - 0.5 * z  }
+       z := d + y;
+
+    ldone:
+       { recombine with exponent term }
+       if( e <> 0 ) then
+       begin
+         y := e;
+         z := z - y * 2.121944400546905827679e-4;
+         z := z + y * 0.693359375;
+       end;
+
+       Ln:= z;
+    end;
+{$endif}
+
+
+{$ifndef FPC_SYSTEM_HAS_SIN}
+    function Sin(d:Real):Real;[internconst:in_const_sin];
+    {*****************************************************************}
+    { Circular Sine                                                   }
+    {*****************************************************************}
+    {                                                                 }
+    { SYNOPSIS:                                                       }
+    {                                                                 }
+    { double x, y, sin();                                             }
+    {                                                                 }
+    { y = sin( x );                                                   }
+    {                                                                 }
+    { DESCRIPTION:                                                    }
+    {                                                                 }
+    { Range reduction is into intervals of pi/4.  The reduction       }
+    { error is nearly eliminated by contriving an extended            }
+    { precision modular arithmetic.                                   }
+    {                                                                 }
+    { Two polynomial approximating functions are employed.            }
+    { Between 0 and pi/4 the sine is approximated by                  }
+    {      x  +  x**3 P(x**2).                                        }
+    { Between pi/4 and pi/2 the cosine is represented as              }
+    {      1  -  x**2 Q(x**2).                                        }
+    {*****************************************************************}
+    var  y, z, zz : Real;
+         j, sign : Integer;
+
+    begin
+      { make argument positive but save the sign }
+      sign := 1;
+      if( d < 0 ) then
+      begin
+         d := -d;
+         sign := -1;
+      end;
+
+      { above this value, approximate towards 0 }
+      if( d > lossth ) then
+      begin
+        sin := 0.0;
+        exit;
+      end;
+
+      y := Trunc( d/PIO4 ); { integer part of x/PIO4 }
+
+      { strip high bits of integer part to prevent integer overflow }
+      z := ldexp( y, -4 );
+      z := Trunc(z);           { integer part of y/8 }
+      z := y - ldexp( z, 4 );  { y - 16 * (y/16) }
+
+      j := Trunc(z); { convert to integer for tests on the phase angle }
+      { map zeros to origin }
+      if odd( j ) then
+      begin
+         inc(j);
+         y := y + 1.0;
+      end;
+      j := j and 7; { octant modulo 360 degrees }
+      { reflect in x axis }
+      if( j > 3) then
+      begin
+        sign := -sign;
+        dec(j, 4);
+      end;
+
+      { Extended precision modular arithmetic }
+      z := ((d - y * DP1) - y * DP2) - y * DP3;
+
+      zz := z * z;
+
+      if( (j=1) or (j=2) ) then
+        y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 )
+      else
+      { y = z  +  z * (zz * polevl( zz, sincof, 5 )); }
+        y := z  +  z * z * z * polevl( zz, sincof, 5 );
+
+      if(sign < 0) then
+      y := -y;
+      sin := y;
+    end;
+{$endif}
+
+
+
+{$ifndef FPC_SYSTEM_HAS_COS}
+    function Cos(d:Real):Real;[internconst:in_const_cos];
+    {*****************************************************************}
+    { Circular cosine                                                 }
+    {*****************************************************************}
+    {                                                                 }
+    { Circular cosine                                                 }
+    {                                                                 }
+    { SYNOPSIS:                                                       }
+    {                                                                 }
+    { double x, y, cos();                                             }
+    {                                                                 }
+    { y = cos( x );                                                   }
+    {                                                                 }
+    { DESCRIPTION:                                                    }
+    {                                                                 }
+    { Range reduction is into intervals of pi/4.  The reduction       }
+    { error is nearly eliminated by contriving an extended            }
+    { precision modular arithmetic.                                   }
+    {                                                                 }
+    { Two polynomial approximating functions are employed.            }
+    { Between 0 and pi/4 the cosine is approximated by                }
+    {      1  -  x**2 Q(x**2).                                        }
+    { Between pi/4 and pi/2 the sine is represented as                }
+    {      x  +  x**3 P(x**2).                                        }
+    {*****************************************************************}
+    var  y, z, zz : Real;
+         j, sign : Integer;
+         i : LongInt;
+    begin
+    { make argument positive }
+      sign := 1;
+      if( d < 0 ) then
+        d := -d;
+
+      { above this value, round towards zero }
+      if( d > lossth ) then
+      begin
+        cos := 0.0;
+        exit;
+      end;
+
+      y := Trunc( d/PIO4 );
+      z := ldexp( y, -4 );
+      z := Trunc(z);  { integer part of y/8 }
+      z := y - ldexp( z, 4 );  { y - 16 * (y/16) }
+
+      { integer and fractional part modulo one octant }
+      i := Trunc(z);
+      if odd( i ) then { map zeros to origin }
+      begin
+        inc(i);
+        y := y + 1.0;
+      end;
+      j := i and 07;
+      if( j > 3) then
+      begin
+        dec(j,4);
+        sign := -sign;
+      end;
+      if( j > 1 ) then
+        sign := -sign;
+
+      { Extended precision modular arithmetic  }
+      z := ((d - y * DP1) - y * DP2) - y * DP3;
+
+      zz := z * z;
+
+      if( (j=1) or (j=2) ) then
+      { y = z  +  z * (zz * polevl( zz, sincof, 5 )); }
+        y := z  +  z * z * z * polevl( zz, sincof, 5 )
+      else
+        y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
+
+      if(sign < 0) then
+        y := -y;
+
+      cos := y ;
+    end;
+{$endif}
+
+
+
+{$ifndef FPC_SYSTEM_HAS_ARCTAN}
+    function ArcTan(d:Real):Real;[internconst:in_const_arctan];
+    {*****************************************************************}
+    { Inverse circular tangent (arctangent)                           }
+    {*****************************************************************}
+    {                                                                 }
+    { SYNOPSIS:                                                       }
+    {                                                                 }
+    { double x, y, atan();                                            }
+    {                                                                 }
+    { y = atan( x );                                                  }
+    {                                                                 }
+    { DESCRIPTION:                                                    }
+    {                                                                 }
+    { Returns radian angle between -pi/2 and +pi/2 whose tangent      }
+    { is x.                                                           }
+    {                                                                 }
+    { Range reduction is from four intervals into the interval        }
+    { from zero to  tan( pi/8 ).  The approximant uses a rational     }
+    { function of degree 3/4 of the form x + x**3 P(x)/Q(x).          }
+    {*****************************************************************}
+    const P : TabCoef = (
+          -8.40980878064499716001E-1,
+          -8.83860837023772394279E0,
+          -2.18476213081316705724E1,
+          -1.48307050340438946993E1, 0, 0, 0);
+          Q : TabCoef = (
+          1.54974124675307267552E1,
+          6.27906555762653017263E1,
+          9.22381329856214406485E1,
+          4.44921151021319438465E1, 0, 0, 0);
+
+    { tan( 3*pi/8 ) }
+    T3P8 = 2.41421356237309504880;
+    { tan( pi/8 )   }
+    TP8 = 0.41421356237309504880;
+
+    var y,z  : Real;
+        Sign : Integer;
+
+    begin
+      { make argument positive and save the sign }
+      sign := 1;
+      if( d < 0.0 ) then
+      begin
+       sign := -1;
+       d := -d;
+      end;
+
+      { range reduction }
+      if( d > T3P8 ) then
+      begin
+        y := PIO2;
+        d := -( 1.0/d );
+      end
+      else if( d > TP8 ) then
+      begin
+        y := PIO4;
+        d := (d-1.0)/(d+1.0);
+      end
+      else
+       y := 0.0;
+
+      { rational form in x**2 }
+
+      z := d * d;
+      y := y + ( polevl( z, P, 3 ) / p1evl( z, Q, 4 ) ) * z * d + d;
+
+      if( sign < 0 ) then
+        y := -y;
+      Arctan := y;
+    end;
+{$endif}
+
+
+{$ifndef FPC_SYSTEM_HAS_FRAC}
+    function frac(d : Real) : Real;[internconst:in_const_frac];
+    begin
+       frac := d - Int(d);
+    end;
+{$endif}
+
+{$ifndef FPC_SYSTEM_HAS_POWER}
+    function power(bas,expo : real) : real;
+     begin
+        if bas=0.0 then
+          begin
+            if expo<>0.0 then
+              power:=0.0
+            else
+              HandleError(207);
+          end
+        else if expo=0.0 then
+         power:=1
+        else
+        { bas < 0 is not allowed }
+         if bas<0.0 then
+          handleerror(207)
+         else
+          power:=exp(ln(bas)*expo);
+     end;
+
+   function power(bas,expo : longint) : longint;
+     begin
+        if bas=0 then
+          begin
+            if expo<>0 then
+              power:=0
+            else
+              HandleError(207);
+          end
+        else if expo=0 then
+         power:=1
+        else
+         begin
+           if bas<0 then
+            begin
+              if odd(expo) then
+               power:=-round(exp(ln(-bas)*expo))
+              else
+               power:=round(exp(ln(-bas)*expo));
+            end
+           else
+            power:=round(exp(ln(bas)*expo));
+         end;
+     end;
+{$endif}
+
+{
+  $Log$
+  Revision 1.2  2001-07-30 21:38:55  peter
+    * m68k updates merged
+
+  Revision 1.1.2.1  2001/07/29 23:58:16  carl
+  + generic version of mathematical routines (taken from m68k directory)
+
+
+}

+ 3 - 37
rtl/inc/mathh.inc

@@ -15,7 +15,6 @@
 
 
    { declarations of the math routines }
    { declarations of the math routines }
 
 
-{$ifdef DEFAULT_EXTENDED}
     function abs(d : extended) : extended;
     function abs(d : extended) : extended;
     function arctan(d : extended) : extended;
     function arctan(d : extended) : extended;
     function cos(d : extended) : extended;
     function cos(d : extended) : extended;
@@ -28,25 +27,8 @@
     function sin(d : extended) : extended;
     function sin(d : extended) : extended;
     function sqr(d : extended) : extended;
     function sqr(d : extended) : extended;
     function sqrt(d : extended) : extended;
     function sqrt(d : extended) : extended;
-    function trunc(d : extended) : longint;
+    function trunc(d : extended) : int64;
     function power(bas,expo : extended) : extended;
     function power(bas,expo : extended) : extended;
-{$else DEFAULT_EXTENDED}
-    function abs(d : real) : real;
-    function arctan(d : real) : real;
-    function cos(d : real) : real;
-    function exp(d : real) : real;
-    function frac(d : real) : real;
-    function int(d : real) : real;
-    function ln(d : real) : real;
-    function round(d : real) : longint;
-    function sin(d : real) : real;
-    function sqr(d : real) : real;
-    function sqrt(d : real) : real;
-    function trunc(d : real) : longint;
-    function power(bas,expo : real) : real;
-    function pi : real;
-{$endif DEFAULT_EXTENDED}
-
     function power(bas,expo : longint) : longint;
     function power(bas,expo : longint) : longint;
 
 
     type
     type
@@ -54,25 +36,9 @@
 
 
     function Real2Double(r : real48) : double;
     function Real2Double(r : real48) : double;
 
 
-{$ifdef HASFIXED}
-    function sqrt(d : fixed) : fixed;
-    function Round(x: fixed): longint;
-    function sqr(d : fixed) : fixed;
-    function abs(d : fixed) : fixed;
-    function frac(d : fixed) : fixed;
-    function trunc(d : fixed) : longint;
-    function int(d : fixed) : fixed;
-{$endif HASFIXED}
-
 {
 {
   $Log$
   $Log$
-  Revision 1.3  2000-10-21 18:20:17  florian
-    * a lot of small changes:
-       - setlength is internal
-       - win32 graph unit extended
-       ....
+  Revision 1.4  2001-07-30 21:38:55  peter
+    * m68k updates merged
 
 
-  Revision 1.2  2000/07/13 11:33:44  michael
-  + removed logs
- 
 }
 }

+ 5 - 2
rtl/inc/objects.pp

@@ -764,7 +764,7 @@ end ['EAX'];
 {$endif}
 {$endif}
 {$ifdef m68k}
 {$ifdef m68k}
 {$define FPC_PreviousFramePointer_Implemented}
 {$define FPC_PreviousFramePointer_Implemented}
-    move.l a6,d0
+    move.l (a6),d0
 end ['D0'];
 end ['D0'];
 {$endif}
 {$endif}
 {$ifndef FPC_PreviousFramePointer_Implemented}
 {$ifndef FPC_PreviousFramePointer_Implemented}
@@ -2833,7 +2833,10 @@ END;
 END.
 END.
 {
 {
   $Log$
   $Log$
-  Revision 1.6  2001-07-15 11:57:16  peter
+  Revision 1.7  2001-07-30 21:38:55  peter
+    * m68k updates merged
+
+  Revision 1.6  2001/07/15 11:57:16  peter
     * merged m68k updates
     * merged m68k updates
 
 
   Revision 1.5  2001/05/06 17:13:22  jonas
   Revision 1.5  2001/05/06 17:13:22  jonas

+ 6 - 7
rtl/inc/system.inc

@@ -164,13 +164,9 @@ End;
 
 
 
 
 { Include processor specific routines }
 { Include processor specific routines }
-{$ifdef m68k}
- { The motorola 680x0 is different then the others }
- { since it may not contain an FPU - this includes }
- { all emulation code.                             }
- {$i lowmath.inc}
-{$endif}
 {$I math.inc}
 {$I math.inc}
+{ Include generic version }
+{$I genmath.inc}
 
 
 {****************************************************************************
 {****************************************************************************
                   Subroutines for String handling
                   Subroutines for String handling
@@ -665,7 +661,10 @@ end;
 
 
 {
 {
   $Log$
   $Log$
-  Revision 1.19  2001-07-29 14:05:55  peter
+  Revision 1.20  2001-07-30 21:38:55  peter
+    * m68k updates merged
+
+  Revision 1.19  2001/07/29 14:05:55  peter
     * include lowmath for m68k (merged)
     * include lowmath for m68k (merged)
 
 
   Revision 1.18  2001/07/29 13:49:15  peter
   Revision 1.18  2001/07/29 13:49:15  peter

+ 11 - 3
rtl/inc/systemh.inc

@@ -78,6 +78,15 @@ Type
   { Comp type does not exist on fpu }
   { Comp type does not exist on fpu }
   Comp    = int64;
   Comp    = int64;
   {$define SUPPORT_SINGLE}
   {$define SUPPORT_SINGLE}
+  {$IFDEF LINUX}
+    { Linux FPU emulator will be used }
+    {$define SUPPORT_DOUBLE}
+  {$ENDIF}
+  {$IFOPT E-}
+    { If not compiling with emulation }
+    { then support double type.       }
+    {$define SUPPORT_DOUBLE}
+  {$ENDIF}
 {$endif}
 {$endif}
 
 
 { Zero - terminated strings }
 { Zero - terminated strings }
@@ -137,7 +146,6 @@ Type
 {$ifdef HASWIDECHAR}
 {$ifdef HASWIDECHAR}
   PWideChar           = ^WideChar;
   PWideChar           = ^WideChar;
   PPWideChar          = ^PWideChar;
   PPWideChar          = ^PWideChar;
-  WChar		      = WideChar;
 {$endif HASWIDECHAR}
 {$endif HASWIDECHAR}
 {$ifdef HASWIDESTRING}
 {$ifdef HASWIDESTRING}
   PWideString         = ^WideString;
   PWideString         = ^WideString;
@@ -520,8 +528,8 @@ const
 
 
 {
 {
   $Log$
   $Log$
-  Revision 1.30  2001-07-30 14:34:29  marco
-   * Added wchar=widechar. * Added wchar=widechar. * Added wchar=widechar. * Added wchar=widechar. * Added wchar=widechar. * Added wchar=widechar. * Added wchar=widechar. * Added wchar=widechar. * Added wchar=widechar.
+  Revision 1.31  2001-07-30 21:38:55  peter
+    * m68k updates merged
 
 
   Revision 1.29  2001/07/29 13:49:15  peter
   Revision 1.29  2001/07/29 13:49:15  peter
     * m68k updates merged
     * m68k updates merged

+ 8 - 5
rtl/unix/dos.pp

@@ -258,7 +258,7 @@ end;
 
 
 Procedure SetDate(Year, Month, Day: Word);
 Procedure SetDate(Year, Month, Day: Word);
 Begin
 Begin
-  Unix.SetDate ( Year, Month, Day ); 
+  Unix.SetDate ( Year, Month, Day );
 End;
 End;
 
 
 
 
@@ -453,7 +453,7 @@ Begin
      If i<=RtlFindSize Then
      If i<=RtlFindSize Then
       Begin
       Begin
         RtlFindRecs[i].SearchNum:=0;
         RtlFindRecs[i].SearchNum:=0;
-        if f.dirptr>0 then
+        if f.dirptr<>0 then
          closedir(pdir(f.dirptr));
          closedir(pdir(f.dirptr));
       End;
       End;
    end;
    end;
@@ -557,7 +557,7 @@ Begin
            DirName[f.NamePos] := #0;
            DirName[f.NamePos] := #0;
          End;
          End;
         f.DirPtr := longint(opendir(@(DirName)));
         f.DirPtr := longint(opendir(@(DirName)));
-        If f.DirPtr > 0 Then
+        If f.DirPtr <> 0 Then
          begin
          begin
            ArrayPos:=FindLastUsed;
            ArrayPos:=FindLastUsed;
            If RtlFindRecs[ArrayPos].SearchNum > 0 Then
            If RtlFindRecs[ArrayPos].SearchNum > 0 Then
@@ -621,7 +621,7 @@ Begin
 {Create Info}
 {Create Info}
   f.SearchSpec := Path;
   f.SearchSpec := Path;
   f.SearchAttr := Attr;
   f.SearchAttr := Attr;
-  f.SearchPos:=0;
+  f.SearchPos  := 0;
   f.NamePos := Length(f.SearchSpec);
   f.NamePos := Length(f.SearchSpec);
   while (f.NamePos>0) and (f.SearchSpec[f.NamePos]<>'/') do
   while (f.NamePos>0) and (f.SearchSpec[f.NamePos]<>'/') do
    dec(f.NamePos);
    dec(f.NamePos);
@@ -877,7 +877,10 @@ End.
 
 
 {
 {
   $Log$
   $Log$
-  Revision 1.8  2001-07-12 12:42:39  marco
+  Revision 1.9  2001-07-30 21:38:55  peter
+    * m68k updates merged
+
+  Revision 1.8  2001/07/12 12:42:39  marco
    * Fixes to the FreeBSD compability of the datetime patches
    * Fixes to the FreeBSD compability of the datetime patches
 
 
   Revision 1.7  2001/07/12 07:20:05  michael
   Revision 1.7  2001/07/12 07:20:05  michael

+ 5 - 2
rtl/unix/video.pp

@@ -728,7 +728,7 @@ begin
           setne   DoUpdate
           setne   DoUpdate
      end;
      end;
 {$else not i386}
 {$else not i386}
-     p1:=plongint(VideoBuf^);
+     p1:=plongint(VideoBuf);
      p2:=plongint(OldVideoBuf);
      p2:=plongint(OldVideoBuf);
      for i:=0 to VideoBufSize div 2 do
      for i:=0 to VideoBufSize div 2 do
        if (p1^<>p2^) then
        if (p1^<>p2^) then
@@ -836,7 +836,10 @@ finalization
 end.
 end.
 {
 {
   $Log$
   $Log$
-  Revision 1.3  2001-07-13 22:05:09  peter
+  Revision 1.4  2001-07-30 21:38:55  peter
+    * m68k updates merged
+
+  Revision 1.3  2001/07/13 22:05:09  peter
     * cygwin updates
     * cygwin updates
 
 
   Revision 1.2  2001/01/21 20:21:41  marco
   Revision 1.2  2001/01/21 20:21:41  marco