|
@@ -344,7 +344,7 @@ Unit UComplex;
|
|
z.re := (znum.im + znum.re * tmp) / denom;
|
|
z.re := (znum.im + znum.re * tmp) / denom;
|
|
z.im := (-znum.re + znum.im * tmp) / denom;
|
|
z.im := (-znum.re + znum.im * tmp) / denom;
|
|
end;
|
|
end;
|
|
- end;
|
|
|
|
|
|
+ end;
|
|
|
|
|
|
operator / (znum : complex; r : real) z : complex;
|
|
operator / (znum : complex; r : real) z : complex;
|
|
{ division : z := znum / r }
|
|
{ division : z := znum / r }
|
|
@@ -572,7 +572,7 @@ Unit UComplex;
|
|
{ _________ }
|
|
{ _________ }
|
|
{ argch(z) = -/+ ln(z + i.V 1 - z.z) }
|
|
{ argch(z) = -/+ ln(z + i.V 1 - z.z) }
|
|
begin
|
|
begin
|
|
- carg_ch:=-cln(z+i*csqrt(z*z-1.0));
|
|
|
|
|
|
+ carg_ch:=-cln(z+i*csqrt(1.0-z*z));
|
|
end;
|
|
end;
|
|
|
|
|
|
function carg_sh (z : complex) : complex;
|
|
function carg_sh (z : complex) : complex;
|
|
@@ -587,7 +587,7 @@ Unit UComplex;
|
|
{ hyperbolic arc tangent }
|
|
{ hyperbolic arc tangent }
|
|
{ argth(z) = 1/2 ln((z + 1) / (1 - z)) }
|
|
{ argth(z) = 1/2 ln((z + 1) / (1 - z)) }
|
|
begin
|
|
begin
|
|
- carg_th:=cln((z+1.0)/(z-1.0))/2.0;
|
|
|
|
|
|
+ carg_th:=cln((z+1.0)/(1.0-z))/2.0;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ functions to write out a complex value }
|
|
{ functions to write out a complex value }
|