{ This file is part of the Free Pascal packages. Copyright (c) 2009-2014 by the Free Pascal development team Implements a SHA-1 digest algorithm (RFC 3174) See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} // Normally, if an optimized version is available for OS/CPU, that will be used // Define to use existing unoptimized implementation { the assembler implementation does not work on darwin } {$ifdef darwin} {$DEFINE SHA1PASCAL} {$endif darwin} unit sha1; {$mode objfpc}{$h+} interface type TSHA1Digest = array[0..19] of Byte; TSHA1Context = record State: array[0..4] of Cardinal; Buffer: array[0..63] of Byte; BufCnt: PtrUInt; { in current block, i.e. in range of 0..63 } Length: QWord; { total count of bytes processed } end; { core } procedure SHA1Init(out ctx: TSHA1Context); procedure SHA1Update(var ctx: TSHA1Context; const Buf; BufLen: PtrUInt); procedure SHA1Final(var ctx: TSHA1Context; out Digest: TSHA1Digest); { auxiliary } function SHA1String(const S: String): TSHA1Digest; function SHA1Buffer(const Buf; BufLen: PtrUInt): TSHA1Digest; function SHA1File(const Filename: String; const Bufsize: PtrUInt = 1024): TSHA1Digest; { helpers } function SHA1Print(const Digest: TSHA1Digest): String; function SHA1Match(const Digest1, Digest2: TSHA1Digest): Boolean; implementation // inverts the bytes of (Count div 4) cardinals from source to target. procedure Invert(Source, Dest: Pointer; Count: PtrUInt); var S: PByte; T: PCardinal; I: PtrUInt; begin S := Source; T := Dest; for I := 1 to (Count div 4) do begin T^ := S[3] or (S[2] shl 8) or (S[1] shl 16) or (S[0] shl 24); inc(S,4); inc(T); end; end; procedure SHA1Init(out ctx: TSHA1Context); begin FillChar(ctx, sizeof(TSHA1Context), 0); ctx.State[0] := $67452301; ctx.State[1] := $efcdab89; ctx.State[2] := $98badcfe; ctx.State[3] := $10325476; ctx.State[4] := $c3d2e1f0; end; const K20 = $5A827999; K40 = $6ED9EBA1; K60 = $8F1BBCDC; K80 = $CA62C1D6; {$IF (NOT(DEFINED(SHA1PASCAL))) and (DEFINED(CPU386)) } // Use assembler version if we have a suitable CPU as well // Define SHA1PASCAL to force use of original reference code {$i sha1i386.inc} {$ELSE} // Use original version if asked for, or when we have no optimized assembler version procedure SHA1Transform(var ctx: TSHA1Context; Buf: Pointer); var A, B, C, D, E, T: Cardinal; Data: array[0..15] of Cardinal; i: Integer; begin A := ctx.State[0]; B := ctx.State[1]; C := ctx.State[2]; D := ctx.State[3]; E := ctx.State[4]; Invert(Buf, @Data, 64); {$push} {$r-,q-} i := 0; repeat T := (B and C) or (not B and D) + K20 + E; E := D; D := C; C := rordword(B, 2); B := A; A := T + roldword(A, 5) + Data[i and 15]; Data[i and 15] := roldword(Data[i and 15] xor Data[(i+2) and 15] xor Data[(i+8) and 15] xor Data[(i+13) and 15], 1); Inc(i); until i > 19; repeat T := (B xor C xor D) + K40 + E; E := D; D := C; C := rordword(B, 2); B := A; A := T + roldword(A, 5) + Data[i and 15]; Data[i and 15] := roldword(Data[i and 15] xor Data[(i+2) and 15] xor Data[(i+8) and 15] xor Data[(i+13) and 15], 1); Inc(i); until i > 39; repeat T := (B and C) or (B and D) or (C and D) + K60 + E; E := D; D := C; C := rordword(B, 2); B := A; A := T + roldword(A, 5) + Data[i and 15]; Data[i and 15] := roldword(Data[i and 15] xor Data[(i+2) and 15] xor Data[(i+8) and 15] xor Data[(i+13) and 15], 1); Inc(i); until i > 59; repeat T := (B xor C xor D) + K80 + E; E := D; D := C; C := rordword(B, 2); B := A; A := T + roldword(A, 5) + Data[i and 15]; Data[i and 15] := roldword(Data[i and 15] xor Data[(i+2) and 15] xor Data[(i+8) and 15] xor Data[(i+13) and 15], 1); Inc(i); until i > 79; Inc(ctx.State[0], A); Inc(ctx.State[1], B); Inc(ctx.State[2], C); Inc(ctx.State[3], D); Inc(ctx.State[4], E); {$pop} Inc(ctx.Length,64); end; {$ENDIF} procedure SHA1Update(var ctx: TSHA1Context; const Buf; BufLen: PtrUInt); var Src: PByte; Num: PtrUInt; begin if BufLen = 0 then Exit; Src := @Buf; Num := 0; // 1. Transform existing data in buffer if ctx.BufCnt > 0 then begin // 1.1 Try to fill buffer up to block size Num := 64 - ctx.BufCnt; if Num > BufLen then Num := BufLen; Move(Src^, ctx.Buffer[ctx.BufCnt], Num); Inc(ctx.BufCnt, Num); Inc(Src, Num); // 1.2 If buffer is filled, transform it if ctx.BufCnt = 64 then begin SHA1Transform(ctx, @ctx.Buffer); ctx.BufCnt := 0; end; end; // 2. Transform input data in 64-byte blocks Num := BufLen - Num; while Num >= 64 do begin SHA1Transform(ctx, Src); Inc(Src, 64); Dec(Num, 64); end; // 3. If there's less than 64 bytes left, add it to buffer if Num > 0 then begin ctx.BufCnt := Num; Move(Src^, ctx.Buffer, Num); end; end; const PADDING: array[0..63] of Byte = ($80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ); procedure SHA1Final(var ctx: TSHA1Context; out Digest: TSHA1Digest); var Length: QWord; Pads: Cardinal; begin // 1. Compute length of the whole stream in bits Length := 8 * (ctx.Length + ctx.BufCnt); // 2. Append padding bits if ctx.BufCnt >= 56 then Pads := 120 - ctx.BufCnt else Pads := 56 - ctx.BufCnt; SHA1Update(ctx, PADDING, Pads); // 3. Append length of the stream (8 bytes) Length := NtoBE(Length); SHA1Update(ctx, Length, 8); // 4. Invert state to digest Invert(@ctx.State, @Digest, 20); FillChar(ctx, sizeof(TSHA1Context), 0); end; function SHA1String(const S: String): TSHA1Digest; var Context: TSHA1Context; begin SHA1Init(Context); SHA1Update(Context, PChar(S)^, length(S)); SHA1Final(Context, Result); end; function SHA1Buffer(const Buf; BufLen: PtrUInt): TSHA1Digest; var Context: TSHA1Context; begin SHA1Init(Context); SHA1Update(Context, buf, buflen); SHA1Final(Context, Result); end; function SHA1File(const Filename: String; const Bufsize: PtrUInt): TSHA1Digest; var F: File; Buf: Pchar; Context: TSHA1Context; Count: Cardinal; ofm: Longint; begin SHA1Init(Context); Assign(F, Filename); {$push}{$i-} ofm := FileMode; FileMode := 0; Reset(F, 1); {$pop} if IOResult = 0 then begin GetMem(Buf, BufSize); repeat BlockRead(F, Buf^, Bufsize, Count); if Count > 0 then SHA1Update(Context, Buf^, Count); until Count < BufSize; FreeMem(Buf, BufSize); Close(F); end; SHA1Final(Context, Result); FileMode := ofm; end; const HexTbl: array[0..15] of char='0123456789abcdef'; // lowercase function SHA1Print(const Digest: TSHA1Digest): String; var I: Integer; P: PChar; begin SetLength(Result, 40); P := Pointer(Result); for I := 0 to 19 do begin P[0] := HexTbl[(Digest[i] shr 4) and 15]; P[1] := HexTbl[Digest[i] and 15]; Inc(P,2); end; end; function SHA1Match(const Digest1, Digest2: TSHA1Digest): Boolean; var A: array[0..4] of Cardinal absolute Digest1; B: array[0..4] of Cardinal absolute Digest2; begin {$push} {$B+} Result := (A[0] = B[0]) and (A[1] = B[1]) and (A[2] = B[2]) and (A[3] = B[3]) and (A[4] = B[4]); {$pop} end; end. k